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Overview P s

= We propose AugWard, an augmentation-aware

learning framework for accurate graph classification
s AugWard enriches graph representations by capturing
“augmentation-induced differences”

= AugWard is easily integrated with any method,

enhancing their accuracy across various settings
m Supervised, semi-supervised, transfer learning
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85> Graph Classification

= Task: Classify a graph into pre-defined classes
based on its structural properties and features

= Graph Neural Networks (GNNSs) capture higher-
order structures for accurate classification

GNN 7(.) —

f(g:)
Graph neural network part Classification part

[11 M. Do et al., (2023) “Two-Stage Training of Graph Neural Networks for Graph Classification” Neural Process Letters 55, pp. 2799-2823
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Problem Definition
Graph Classification

= Given
s Aset G ={G,,:-,Gy} of N distinct graphs
m AsetY ={y,, -, yy} of corresponding labels
s A set C of classes

= Predict
s VG; € G,y € C, the probability P(y|G;)
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Graph Augmentation

= Graph augmentation generates variants of original
graphs while preserving their labels

= Mitigate the common issue of overfitting

X Z])

Model-agnostic graph augmentation

O O o)
Q0 ) S0
® O
O OCo Oo

Baseline Rich decision boundary learned by f

[11J. Yoo et al.,, (2022) “Model-Agnostic Augmentation for Accurate Graph Classification” WWW 2022
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Limitations of Previous Work

= EXxisting methods are suboptimal due to 2 major
limitations by simplistic adaptation of augmentation:

R . Ignorance of difference between original
and augmented graphs

s Limitation 2. Deceptive assumption that the perturbation
ratio p ensures similarity among augmented graphs

Original Graph Augmented graphs with same ratio p

I hdFc 1]

L2
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8o Graph Neural Networks

= Graph Neural Networks (GNNSs) jointly train the
encoder f, and the classifier g4 for classification:

z; = fp(G), P = 9o (Zg)

= z; € R?: representation of a graph G = (V,€,X)
= p; € RI¢: predicted probabilities (i-th entry of pg) = P(y = il§)

zg = READOUT ({h[u e v,1 € [L]}),
h{’ = AGGREGATE ({h{™:v € ,}),h{ = COMBINE (h{ ™", k")

o0 hgo) =X,, [L] =1{0,---,L}, IV,: set of neighbors for node u
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@‘Bo Graph Augmentation

= Augmented graph G* is randomly sampled as:
G* ~Tp(G719)

= G:original graph
= 7,(-|G): augmentation distribution conditioned on G
= p: perturbation ratio (amount of change from §)

= Various designs for T,

= 1. Drop-based methods: remove or mask attributes of
nodes and edges according to ratio p

s 2. Mixup-based methods: fuse two graphs by ratio p
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8o FGWD
Fused Gromov-Wasserstein Distance

= FGWD measures the distance between two graphs
G=W,X)and gt = (V,£,XT) by combining
feature-level and structure-level differences

FGWD,(G,G") = min a-WDX, X", m) + (1 —a) GWD(E, ET, )

mell(p,v)
Wasserstein Distance Gromov-Wasserstein Distance
(Feature-level distance) (Structure-level distance)

s «a: balancing hyperparameter
= 71T. coupling matrix
s [I(u,v): a set of all possible

matchings of distributions
peRY and v e RV

[11T. Vayer et al., (2020). “Fused Gromov-Wasserstein distance for structured objects”. Algorithms, 13(9), 212.
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Overall Structure

= AugWard for accurate graph classification
s Considers the “augmentation-induced difference”
= Applicable to any augmentation 7, / encoder f, / classifier g,

. / AUGWARD 3 7\ I Augmentation-aware training

“'O

D= FGWD

I3. Consistency regularization
O @) Graph embedding | ---* Ground-truth 7
| Baseli del (- Decision bound { {
T B e clsiier | _ Bl - xcsionbouni 00 Eg )| o
@ Neural network / Label D Feature spacegg Structure space 0 0
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Overall Structure

= AugWard for accurate graph classification
= ldea 1. Augmentation-aware training
s ldea 2. Graph distance-based difference
= ldea 3. Consistency regularization

- Bo_F : . / AUGWARD B ™ I1. Augmentation-aware training
S | gypr| L]
I = T b . 0
ﬁ ﬁ [ lasses [¢] ' .-"O
9o 9o
H 'aware
ase

'

D= FGWD

I3. Consistency regularization

C] D Graph embedding | ---* Ground-truth p

Baseli del ~ Decision bound [ {
T B e clsiier | _ Bl - xcsionbouni 00 Eg )| o
@ Neural network / Label D Feature spaceQS Structure space 0 0
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= [he impact of proposed ideas
= ldeas 1 and 2 enrich the representation of each graph
= ldea 3 regulates the classifier for consistent predictions

Prob.
Space

Rep.
Space

Graph
Space

Existing

@

'!?’OlmpaCt of Proposed Ideas

o
e
-
.

@ Graph G

@ Graph G*
@ Graph G+

.._._..D(g,ng)
.._.._.-D(g,gﬁ)

<—+— Perturb. Ratio p
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Loss Function

= Combining all 3 ideas, we get the objective function

s AugWard supports various learning paradigms with
baseline loss Ly qe:

Baseline loss (e.g., cross-entropy)

L£(G,6%,Y) =|Lpase (G, G, Y|+ LAquard(g: G,

LAquard (g' g+) — )lawareLaware (g: g+) + AcrLcr (g' g+)

ldea 1. Augmentation-aware training Idea 3. Consistency
ldea 2. Graph distance-based difference Regularization
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Main Ideas
1. Augmentation-aware training

= Challenge: Capturing augmentation-induced difference
s Existing methods ignore the difference between original
and augmented graphs, or augmentation-induced difference
m Pearson Correlation Coefficient (PCC) close to O indicates
no strong correlation

Perturbation Ratio
| B |

0.05 0.15 0.25 0.35 0.45
S 16 pcC=002] 2 PCC =0.05
<
= 12 by s . 24
g 8 ‘” ‘“—:\?. ’ ".e.@% ®8 16 -
.S d’u£'¢~? v\; ..é(af) ..
£ et des L. .
AR AR ‘%; S8
O 54 X
- ,
v 0 ’. | | 1e-30 "SRG le-3

4 6 8 10 12 4 6 8 10 12
Graph Distance Graph Distance
NodeDrop EdgeDrop

** Euclidean ||zg — zg+||2 and graph distances of G and 100 augmented graphs G* per p € {0.05,0.1, -, 0.45}
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Main Ideas
1. Augmentation-aware training

= ldea: Augmentation-aware training
= Intuition. Encourage the encoder fy to align
representation-level and graph-level differences
= [rain a neural network h, by optimizing £,,,4re-

NG )
Laware(G,G1) = ||ho(zg, ZQ+) -D(G, 69| ;TGIWSZD S
s R S
= D(-): graph-level distance 1 p— 1

9¢ ) 9¢
t
“Which metric is suitable for D(G,G*) ?” ho

Y U
** A fully connected layer h,, with the concatenation of z; and z;+ as input | fug ]:f
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2. Graph Distance-based Difference

= Challenge: Measuring the difference gained from graph

augmentation
s Generated graphs at a fixed perturbation ratio p exhibit
significant variations due to inherent randomness

3.0
Q
Q
™ 5
A7 . 5
A 20- T -
% [ -
= 1.57
2 |
5 1.0 . .
o
5 0.5 1
“ ol L . |
Q@Q Q@Q Q\\* , \_p\% Q@Q Q&OQ @* . \@Q
§F & %\go » ¥ & %\go »
p=20.2 p = 0.4

** Euclidean ||zg — zg+||z distances between G and 100 augmented graphs G* with p fixed at 0.2 and 0.4
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) Do Main ldeas

2. Graph Distance-based Difference

= ldea: Graph Distance-based Difference
s Fused Gromov-Wasserstein Distance (FGWD):
optimizes both differences in structures and features

Laware = ”hw(zg' zg+) — FGWD, (G, g+)”2

= Difference in either structure or feature leads to a
significant distinction in their chemical type

H H[oO H (o H H (H H

I I 1 L1 I I I I
H—-C—C+C—0—H) H—C+C—0+C—H H—C—+tN—O+C—H

I I I I I

H H H

I
H H H

(a) C3HgO, (Acid) (b) C3HgO, (Neutral) (c) C,H,NO (Base)

** (a) and (b) share graph features, while (b) and (c) exhibit identical graph structures
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Main ldeas
3. Consistency Regularization

= Motivation: Training robust classifier
= Given distinguishable representations, training the
classifier robustly is crucial for better generalization
= In node classification!!], matching predictions from different
representations (same label) improves the generalization

= ldea: Consistency regularization
= Matching two predictions p; and pg+

ICl
Ler = H(pg,pgr) == )~ Py =ilG) -logP(y = ilG™)

l

s H(:,): cross-entropy loss

[11W. Feng et al., (2020) “Graph Random Neural Network for Semi-Supervised Learning on Graphs” NeurlPS 2020
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85> Experimental Setup

s Datasets
s Supervised, semi-supervised learning: 10 TUDatasets
= [Transfer learning: ZINC15 = 8 MoleculeNet datasets

= Augmentations

s Drop-based: NodeDrop, EdgeDrop, AttrMask, Subgraph, GraphAug
s Mixup-based: SubMix, S-Mixup

a Baselines
= Model: a 4-layered GIN
s Semi-supervised (10%): Infograph, GraphCL, CuCo, GCL-SPAN
s Transfer learning: ContextPred, GraphCL, MGSSL, GraphMAE
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Blg>e Experimental Questions

= We perform experiments on the following questions:

Q1. Accuracy in supervised graph classification

Q2. Accuracy in semi-supervised graph classification
Q3. Representation transferability

Q4. Runtime analysis

Q5. Ablation study
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Experiments
1. Accuracy in supervised graph classification

= AugWard consistently enhances classification accuracy
s Up to 2.13%p in average accuracy

2.00%p

NodeDrop

EdgeDrop

AttrMask

Subgraph

GraphAug

0.69%p
SubMix

0.63%p

. — B Bascline
S-Mixup

- AugWard (Proposed)

600 605 61.0 615 620 625 630 635  64.0

Classification Accuracy [%]
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Experiments
2. Accuracy in semi-supervised graph classification

= AugWard is also beneficial in semi-supervised setting
s Up to 1.52%p increase in average accuracy

1.52%p BN Bascline
" BN+ AugWard (Proposed)

InfoGraph

GraphCL

CuCo

GCL-SPAN

540 545 550 555 560 565 570 575 580
Classification Accuracy [%]
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Experiments
3. Representation Transferability

= AugWard offers more expressive representations
= Improves the performance of transfer learning models;

up to 3.71%p in average accuracy

1.62%p B Bascline
) 3.55%p -
) 3.71%p )
MGSSL
) 2.19%p -
GraphMAE * »
70 71 72 73 74 75 1

Classification Accuracy [%]
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Experiments
4. Runtime Analysis

= [he overhead from AugWard is marginal
s Computing FGWD takes 4.89% of total time in average

M Basecline B FGWD & Other

I-M*
NCI1
PTC*
ENZ*
TWI* ><>
Average

0 20 40 60 80 100

% of Total Training Time

Dataset

'R R ERA
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Experiments
5. Ablation Study

= All ideas contribute to the enhanced performance
s Considering the augmentation-induced difference is

beneficial, even with simple heuristics

Variants Ideas Avg. Imp.

A: GIN + NodeDrop | Existing 61.58 -
A+p I1 61.90 +0.32
Naive metrics for A + NFs I1 62.50 +0.92
graph-level distance A + AMs I1 62.55 +0.98
A + Edge Jaccard I1 62.53 +0.95
FGWD (Proposed) A + FGWD 11+12 63.04 +1.46
A + AUGWARD I11+12+13 63.58 +2.00
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Conclusion

= We propose AugWard for graph classification
= AugWard considers the augmentation-induced differences

= Main ideas
= Ildeas 1 & 2. Augmentation-aware training with FGWD
= Ideas 3. Consistency regularization

= Experiments

= AugWard consistently enhances classification performance
across various learning settings
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