

Zero-shot Quantization: A Comprehensive Survey

Minjun Kim*, Jaehyeon Choi*, Jongkeun Lee, Wonjin Cho, and U Kang†

Seoul National University, Seoul, South Korea

*Equal Contribution, †Correspond to: ukang@snu.ac.kr

Overview

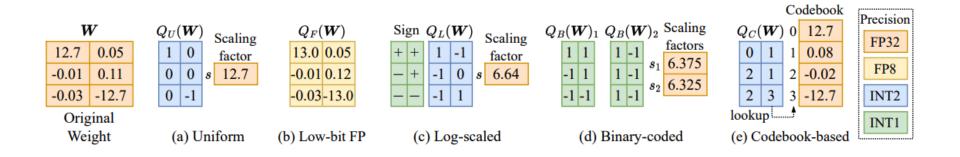
- We survey Zero-shot Quantization (ZSQ), a data-free model compression paradigm
 - ZSQ faces three key challenges: knowledge transfer, synthetic-real discrepancy, and task adaptability
- We categorize and review ZSQ methods in three main groups
 - Synthesis-free, generator-based, and noise-optimization
- We discuss current limitations and future directions
 - Improving synthetic dataset, theory, problem setting, and evaluation remain open research questions

Introduction

- Problem Formulation
- Categorization
- ZSQ Algorithms
- Future Research Directions
- Conclusion

- Task: Deploying neural networks on resourceconstrained edge devices is challenging
- Various model compression techniques:
 - Quantization
 - Pruning
 - Knowledge distillation
 - Low-rank approximation
 - Parameter sharing
 - Efficient architecture design
 - and more...

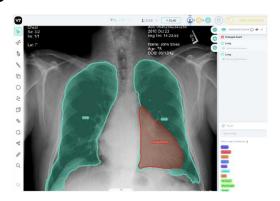
- Quantization methods represent a full-precision model with lower-bit formats
 - High compression and acceleration rate with minimal performance degradation
 - e.g., 32-bit model → 4-bit quantization: 8× compression



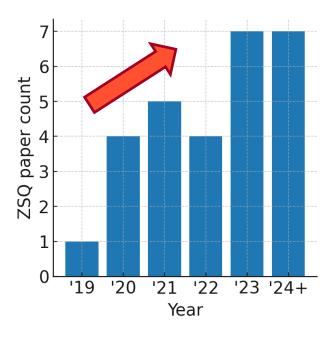
IJCAI 2025 MONTREAL

Zero-shot Quantization

- Zero-shot Quantization (ZSQ) achieves quantization without requiring any real data
 - Limitation of existing methods. the dependence on training data
- Privacy or policy issues may block access to data
 - e.g., medical records, confidential business information



- 25+ paper in major venues since DFQ [ICCV 2019]
 - Rapid growth in research
 - Limitation. Existing surveys focus on broader topics
 - e.g., model compression or network quantization



- We conduct the first in-depth survey on ZSQ
 - Formulation. We formulate the ZSQ problem and explore three critical challenges
 - Categorization. We categorize ZSQ algorithms based on their data generation strategies
 - Analysis. We analyze current ZSQ algorithms, highlighting their motivations, ideas, and key findings
 - **Discussion.** We outline future research questions to guide research toward impactful advancements

Outline

- Introduction
- Problem Formulation
 - Categorization
 - ZSQ Algorithms
 - Future Research Directions
 - Conclusion

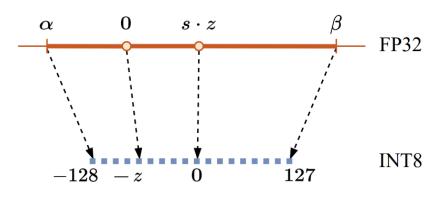
Preliminaries

Network Quantization

■ Min-max Uniform Quantization (Input: $\mathbf{W}, B \rightarrow \text{Output: } \mathbf{W}_q$)

$$W_q = \left[\frac{W}{s} - z + \frac{1}{2}\right], \ \ s = \frac{\beta - \alpha}{2^B - 1}, \ \ z = \frac{\alpha}{s} + 2^{B - 1}$$

- W: weight matrix of the full precision model
- W^q: B-bit quantized matrix of W
- *B*: quantization bits
- s: scaling factor
- z: integer offset
- \bullet α : minimum value in W
- lacksquare eta: maximum value in W



Preliminaries QAT and PTQ

- Quantization methods are classified into two settings by their need of additional fine-tuning
 - QAT (Quantization-Aware Training). First quantize the model, then fine-tune the weight parameters
 - Rely on min-max quantization
 - PTQ (Post-Training Quantization). No additional training required
 - e.g., adaptive rounding, block reconstruction, random dropping

Zero-shot Quantization

Given

- lacksquare A model θ trained on a task \mathcal{T}
- Quantization bits B

Generate

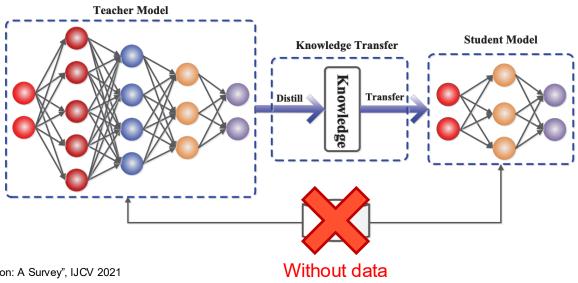
• a quantized model θ_q within the B-bit limit for maximum accuracy on $\mathcal T$ without the use of real data

- ZSQ algorithms should overcome key challenges that arise due to the absence of real data
 - 1. Knowledge transfer from the pre-trained model
 - 2. Discrepancy between real and synthetic datasets
 - 3. Diversity of the problem setting

Main Challenges of ZSQ

Knowledge transfer from the pre-trained model

- How do we transfer knowledge without real data?
 - Quantized model must preserve original behaviors
 - Challenge. No real data for alignment or calibration
 - Solution Direction. Adapt synthetic data, distillation losses, or architectural constraints to mimic the original

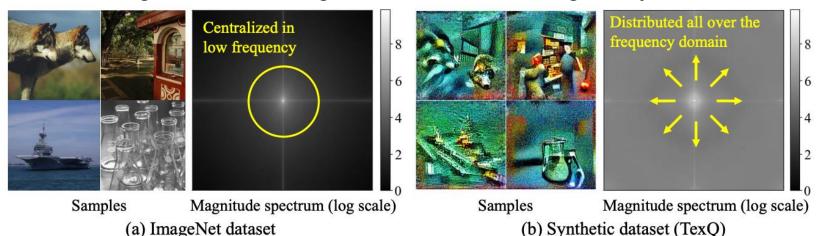


MONTREAL

Main Challenges of ZSQ

Discrepancy between real and synthetic datasets

- Synthetic data doesn't match real data distributions
 - Challenge. Models quantized with synthetic data may underperform on real-world tasks
 - Solution Direction. Improving the quality of synthetic data or dataset reduces performance degradation
 - e.g., noise in image, intra-class heterogeneity



Main Challenges of ZSQ

Diversity of the problem setting

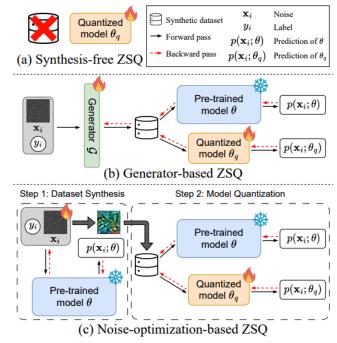
- ZSQ should generalize to various architectures, tasks, and quantization bit-widths
 - Challenge. Some algorithms work only for specific settings
 - Solution Direction. Develop universal frameworks or adaptable techniques
 - e.g., ViT-specific method due to patch-wise operation



Outline

- Introduction
- Problem Formulation
- Categorization
 - ZSQ Algorithms
 - Future Research Directions
 - Conclusion

- We categorize ZSQ algorithms based on their data generation approach as:
 - Synthesis-free ZSQ
 - Quantize models without generating any synthetic data
 - Generator-based ZSQ
 - Train an additional generator *G* to produce synthetic data
 - Noise-optimization-based ZSQ
 - Directly optimize noise inputs to make synthetic data



- We summarize the key features of ZSQ methods
 - 1. Data Generation Approach

Synthesisfree

Generatorbased

Noiseoptimization

	Method	Training	Scope of		# Images	Accuracy (FP = 71.47)	
	Method	Requirement	Contribution	Architecture		W4A4	W3A3
	DFQ [2019]	PTQ	Q	CNN	0	55.78	-
	SQuant [2022]	PTQ	Q	CNN	0	66.14	25.74
	UDFC [2023]	PTQ	Q	CNN	0	63.49	-
	GDFQ [2020]	QAT	S, Q	CNN	1.28M	60.60	20.23
	ZAQ [2021]	QAT	S, Q	CNN	1.28M	52.64	-
	ARC [2021]	QAT	S, Q	CNN	1.28M	61.32	23.37
	Qimera [2021]	QAT	S, Q	CNN	1.28M	63.84	1.17
	ARC + AIT [2022]	QAT	Q	CNN	1.28M	65.73	-
	AdaSG [2023b]	QAT	S, Q	CNN	1.28M	66.50	37.04
	AdaDFQ [2023a]	QAT	S, Q	CNN	1.28M	66.53	38.10
	Causal-DFQ [2023]	QAT	S, Q	CNN	1.28M	68.11	-
	RIS [2024]	QAT	S	CNN	1.28M	67.75	-
	GenQ [2024b]	PTQ / QAT	S	CNN	1 K §	69.77§	-
	DeepInversion [2020]	QAT	S	CNN	32	70.27*	64.28^{\dagger}
	IntraQ [2022]	QAT	S, Q	CNN	5.12K	66.47	45.51
	HAST [2023]	QAT	S, Q	CNN	5.12K	66.91	51.15
	TexQ [2023]	QAT	S, Q	CNN	5.12K	67.73	50.28
	PLF [2024]	QAT	Q	CNN	5.12K	67.02	-
	SynQ [2025b]	QAT	Q	CNN / ViT	5.12K	67.90	52.02
	ZeroQ [2020]	PTQ	S, Q	CNN	1K	26.04	-
	KW [2020] DSG [2021]	PTQ	S, Q	CNN CNN	1K 1K	69.08 34.53	-
1	MixMix [2021b]	PTQ	S	CNN	1K 1K§	69.46 [§]	-
		PTQ / QAT	S S				-
	PSAQ-ViT [2022]	PTQ	_	ViT	32 11	71.56*	65.57 [†]
	Genie [2023b] SADAG [2024]	PTQ PTQ	S, Q	CNN CNN	1K 1K	69.66 69.72	66.89 67.10
	SMI [2024]	PTQ	S, Q S	ViT	32	70.13*	64.04 [†]
	CLAMP-ViT [2024]	-		ViT	32	70.13	64.04 [†]
	CLAIVIP-V11 [2024]	PTQ	S, Q	VII	32	/2.1/	69.93

Accuracy (FP = 71.47)

We summarize the key features of ZSQ methods

Scope of

2. Training Requirement

Training

\Box	

Method

Method	Requirement	Contribution	Architecture	# Images	W4A4	W3A3
DFQ [2019]	PTQ	Q	CNN	0	55.78	-
SQuant [2022]	PTQ	Q	CNN	0	66.14	25.74
UDFC [2023]	PTQ	Q	CNN	0	63.49	-
GDFQ [2020]	QAT	S, Q	CNN	1.28M	60.60	20.23
ZAQ [2021]	QAT	S, Q	CNN	1.28M	52.64	-
ARC [2021]	QAT	S, Q	CNN	1.28M	61.32	23.37
Qimera [2021]	QAT	S, Q	CNN	1.28M	63.84	1.17
ARC + AIT [2022]	QAT	Q	CNN	1.28M	65.73	-
AdaSG [2023b]	QAT	S, Q	CNN	1.28M	66.50	37.04
AdaDFQ [2023a]	QAT	S, Q	CNN	1.28M	66.53	38.10
Causal-DFQ [2023]	QAT	S, Q	CNN	1.28M	68.11	-
RIS [2024]	QAT	S	CNN	1.28M	67.75	-
GenQ [2024b]	PTQ / QAT	S	CNN	1 K §	69.77§	-
DeepInversion [2020]	QAT	S	CNN	32	70.27*	64.28^{\dagger}
IntraQ [2022]	QAT	S, Q	CNN	5.12K	66.47	45.51
HAST [2023]	QAT	S, Q	CNN	5.12K	66.91	51.15
TexQ [2023]	QAT	S, Q	CNN	5.12K	67.73	50.28
PLF [2024]	QAT	Q	CNN	5.12K	67.02	-
SynQ [2025b]	QAT	Q	CNN / ViT	5.12K	67.90	52.02
ZeroQ [2020]	PTQ	S, Q	CNN	1K	26.04	-
KW [2020]	PTQ	S, Q	CNN	1K	69.08	-
DSG [2021]	PTQ	S	CNN	1K	34.53	-
MixMix [2021b]	PTQ / QAT	S	CNN	1 K §	69.46§	
PSAQ-ViT [2022]	PTQ	S	ViT	32	71.56*	65.57^{\dagger}
Genie [2023b]	PTQ	S, Q	CNN	1 K	69.66	66.89
SADAG [2024]	PTQ	S, Q	CNN	1K	69.72	67.10
SMI [2024]	PTQ	S	ViT	32	70.13*	64.04
CLAMP-ViT [2024]	PTQ	S, Q	ViT	32	72.17*	69.93 [†]

QAT

Accuracy (FP = 71.47)

We summarize the key features of ZSQ methods

Scope of

3. Scope of Contribution

Training

S: Data
Synthesis

Mothed	iraining	Scope of	A	и т		,		
	Method	Requirement	Contribution	Architecture	# Images	W4A4	W3A3	
	DFQ [2019]	PTQ	Q	CNN	0	55.78	-	
	SQuant [2022]	PTQ	Q	CNN	0	66.14	25.74	
	UDFC [2023]	PTQ	Q	CNN	0	63.49	-	
	GDFQ [2020]	QAT	S, Q	CNN	1.28M	60.60	20.23	
	ZAQ [2021]	QAT	S, Q	CNN	1.28M	52.64	-	
	ARC [2021]	QAT	S, Q	CNN	1.28M	61.32	23.37	
	Qimera [2021]	QAT	S, Q	CNN	1.28M	63.84	1.17	
	ARC + AIT [2022]	QAT	Q	CNN	1.28M	65.73	-	
	AdaSG [2023b]	QAT	S, Q	CNN	1.28M	66.50	37.04	
	AdaDFQ [2023a]	QAT	S, Q	CNN	1.28M	66.53	38.10	
	Causal-DFQ [2023]	QAT	S, Q	CNN	1.28M	68.11	-	
	RIS [2024]	QAT	S	CNN	1.28M	67.75	-	
	GenQ [2024b]	PTQ / QAT	S	CNN	1 K §	69.77 [§]	-	
	DeepInversion [2020]	QAT	S	CNN	32	70.27*	64.28 [†]	
	IntraQ [2022]	QAT	S, Q	CNN	5.12K	66.47	45.51	
	HAST [2023]	QAT	S, Q	CNN	5.12K	66.91	51.15	
	TexQ [2023]	QAT	S, Q	CNN	5.12K	67.73	50.28	
	PLF [2024]	QAT	Q	CNN	5.12K	67.02	-	
	SynQ [2025b]	QAT	Q	CNN / ViT	5.12K	67.90	52.02	
	ZeroQ [2020]	PTQ	S, Q	CNN	1K	26.04	-	
	KW [2020]	PTQ	S, Q	CNN	1 K	69.08	-	
	DSG [2021]	PTQ	S	CNN	1 K	34.53	-	
	MixMix [2021b]	PTQ / QAT	S	CNN	1 K §	69.46§	-	
	PSAQ-ViT [2022]	PTQ	S	ViT	32	71.56*	65.57^{\dagger}	
	Genie [2023b]	PTQ	S, Q	CNN	1K	69.66	66.89	
	SADAG [2024]	PTQ	S, Q	CNN	1K	69.72	67.10	
	SMI [2024]	PTQ	S	ViT	32	70.13*	64.04^{\dagger}	
	CLAMP-ViT [2024]	PTO	S, O	ViT	32	72.17*	69.93 [†]	

Q: Network **Q**uantization

Accuracy (FP = 71.47)

- We summarize the key features of ZSQ methods
 - 4. Architecture of the Target Network

Training

	N	
	N	N
V		

ViT

	Training Scope of		A 1- 14 4			
Method	Requirement	Contribution	Architecture	# Images	W4A4	W3A3
DFQ [2019]	PTQ	Q	CNN	0	55.78	-
SQuant [2022]	PTQ	Q	CNN	0	66.14	25.74
UDFC [2023]	PTQ	Q	CNN	0	63.49	-
GDFQ [2020]	QAT	S, Q	CNN	1.28M	60.60	20.23
ZAQ [2021]	QAT	S, Q	CNN	1.28M	52.64	-
ARC [2021]	QAT	S, Q	CNN	1.28M	61.32	23.37
Qimera [2021]	QAT	S, Q	CNN	1.28M	63.84	1.17
ARC + AIT [2022]	QAT	Q	CNN	1.28M	65.73	-
AdaSG [2023b]	QAT	S, Q	CNN	1.28M	66.50	37.04
AdaDFQ [2023a]	QAT	S, Q	CNN	1.28M	66.53	38.10
Causal-DFQ [2023]	QAT	S, Q	CNN	1.28M	68.11	-
RIS [2024]	QAT	S	CNN	1.28M	67.75	-
GenQ [2024b]	PTQ / QAT	S	CNN	1 K §	69.77 [§]	-
DeepInversion [2020]	QAT	S	CNN	32	70.27*	64.28^{\dagger}
IntraQ [2022]	QAT	S, Q	CNN	5.12K	66.47	45.51
HAST [2023]	QAT	S, Q	CNN	5.12K	66.91	51.15
TexQ [2023]	QAT	S, Q	CNN	5.12K	67.73	50.28
PLF [2024]	QAT	Q	CNN	5.12K	67.02	-
SynQ [2025b]	QAT	Q	CNN / ViT	5.12K	67.90	52.02
ZeroQ [2020]	PTQ	S, Q	CNN	1K	26.04	-
KW [2020]	PTQ	S, Q	CNN	1K	69.08	-
DSG [2021]	PTQ	S	CNN	1K	34.53	-
MixMix [2021b]	PTQ / QAT	S	CNN	1 K §	69.46§	-
PSAQ-ViT [2022]	PTQ	S	ViT	32	71.56*	65.57^{\dagger}
Genie [2023b]	PTQ	S, Q	CNN	1 K	69.66	66.89
SADAG [2024]	PTQ	S, Q	CNN	1 K	69.72	67.10
SMI [2024]	PTQ	S	ViT	32	70.13*	64.04^{\dagger}
CLAMP-ViT [2024]	PTQ	S, Q	ViT	32	72.17*	69.93^{\dagger}

- We summarize the key features of ZSQ methods
 - 5. Performance with the Number of Synthetic Images

3.6.43	Training	Scope of		ш.т.	Accuracy (FP = 71.47)	
Method	Requirement	Contribution	Architecture	# Images	W4A4	W3A3
DFQ [2019]	PTQ	Q	CNN	0	55.78	-
SQuant [2022]	PTQ	Q	CNN	0	66.14	25.74
UDFC [2023]	PTQ	Q	CNN	0	63.49	-
GDFQ [2020]	QAT	S, Q	CNN	1.28M	60.60	20.23
ZAQ [2021]	QAT	S, Q	CNN	1.28M	52.64	-
ARC [2021]	QAT	S, Q	CNN	1.28M	61.32	23.37
Qimera [2021]	QAT	S, Q	CNN	1.28M	63.84	1.17
ARC + AIT [2022]	QAT	Q	CNN	1.28M	65.73	-
AdaSG [2023b]	QAT	S, Q	CNN	1.28M	66.50	37.04
AdaDFQ [2023a]	QAT	S, Q	CNN	1.28M	66.53	38.10
Causal-DFQ [2023]	QAT	S, Q	CNN	1.28M	68.11	-
RIS [2024]	QAT	S	CNN	1.28M	67.75	-
GenQ [2024b]	PTQ / QAT	S	CNN	1 K §	69.77 [§]	-
DeepInversion [2020]	QAT	S	CNN	32	70.27*	64.28 [†]
IntraQ [2022]	QAT	S, Q	CNN	5.12K	66.47	45.51
HAST [2023]	QAT	S, Q	CNN	5.12K	66.91	51.15
TexQ [2023]	QAT	S, Q	CNN	5.12K	67.73	50.28
PLF [2024]	QAT	Q	CNN	5.12K	67.02	-
SynQ [2025b]	QAT	Q	CNN / ViT	5.12K	67.90	52.02
ZeroQ [2020]	PTQ	S, Q	CNN	1K	26.04	-
KW [2020]	PTQ	S, Q	CNN	1K	69.08	-
DSG [2021]	PTQ	S	CNN	1K	34.53	-
MixMix [2021b]	PTQ / QAT	S	CNN	1 K §	69.46§	-
PSAQ-ViT [2022]	PTQ	S	ViT	32	71.56*	65.57 [†]
Genie [2023b]	PTQ	S, Q	CNN	1K	69.66	66.89
SADAG [2024]	PTQ	S, Q	CNN	1K	69.72	67.10
SMI [2024]	PTQ	S	ViT	32	70.13*	64.04^{\dagger}
CLAMP-ViT [2024]	PTQ	S, Q	ViT	32	72.17*	69.93 [†]

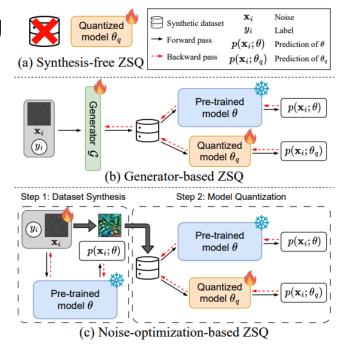
Classification accuracy of a ResNet-18 model trained on ImageNet * W8A8 on CIFAR-100 † W8A8/W4A8 of DeiT-T

Outline

- Introduction
- Problem Formulation
- Categorization
- ZSQ Algorithms
 - Future Research Directions
 - Conclusion

Revisited

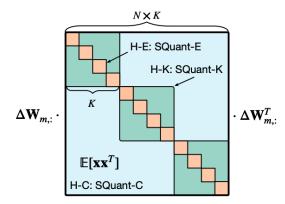
- We categorize ZSQ algorithms based on their data generation approach as:
 - Synthesis-free ZSQ
 - Quantize models without generating any synthetic data
 - Generator-based ZSQ
 - Train an additional generator *G* to produce synthetic data
 - Noise-optimization-based ZSQ
 - Directly optimize noise inputs to make synthetic data



ZSQ Algorithms

Synthesis-free ZSQ

- Synthesis-free ZSQ methods compress a pretrained model without generating any synthetic data
 - They leverage structural properties or theoretical foundations to mitigate performance degradation
 - Representative method. SQuant [ICLR 2022]
 - Evaluating the quantization error with the Hessian of each layer
 - Diagonal Hessian approximation for efficient computation



ZSQ Algorithms

- Generator-based ZSQ
- Generator-based ZSQ employs an independent generator model *G* to produce synthetic datasets
 - Generally, they train a GAN-based generator from scratch
 - Representative method. AdaSG [AAAI 2023]
 - Reformulating ZSQ into a zero-sum game between the generator \mathcal{G} and the quantized model θ_q on reward $\mathcal{R}(\cdot)$
 - Adversarial sample generation

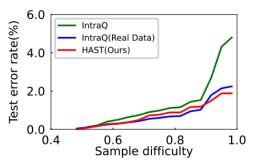
$$\min_{\theta_q} \max_{\mathcal{G}} \, \mathcal{R}\left(\mathcal{G}, \theta_q\right)$$

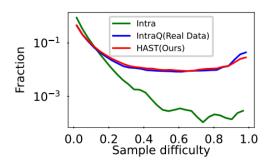


ZSQ Algorithms

Noise-optimization-based ZSQ

- Noise-optimization-based ZSQ directly optimizes noise to generate the dataset from iterative updates
 - They universally follow a two-step scheme:
 - 1. Dataset synthesis → 2. Model quantization
 - Representative method. HAST [CVPR 2023]
 - Previous methods perform poorly on difficult images, since their synthetic datasets lack challenging samples
 - Produce more samples difficult for both original / quantized models





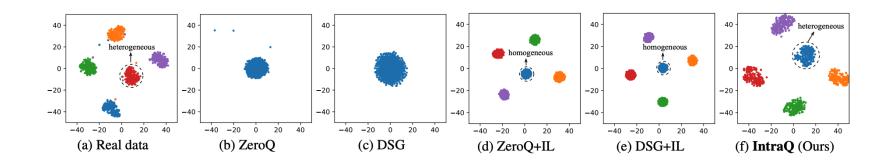
Outline

- Introduction
- Problem Formulation
- Categorization
- ZSQ Algorithms
- **▶** Future Research Directions
 - Conclusion

- Research questions remain open for exploration
 - Synthetic datasets
 - 1. More principled analysis on synthetic datasets
 - 2. Faster generation of synthetic datasets
 - Theory
 - 3. Theoretical exploration of ZSQ
 - Problem setting
 - 4. Broader application to various tasks and domains
 - 5. Diverse problem settings
 - 6. Combining other model compression techniques
 - Evaluation
 - 7. Evaluating practical impact on real-world scenarios

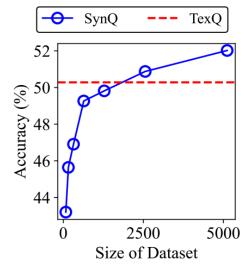
Synthetic Datasets

- 1. More principled analysis on synthetic datasets
 - Most studies fix individual features instead of investigating their root causes
 - Deeper analysis may yield fundamental improvements



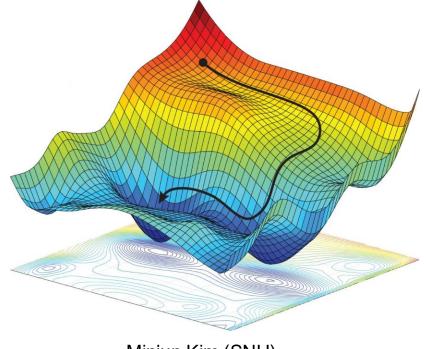
Synthetic Datasets

- 2. Faster generation of synthetic datasets
 - Increasing the size of synthetic datasets enhances the performance of quantized models
 - How can we reduce the generation time?
 - 1 to 4 GPU hours required to generate 5k 224×224 images



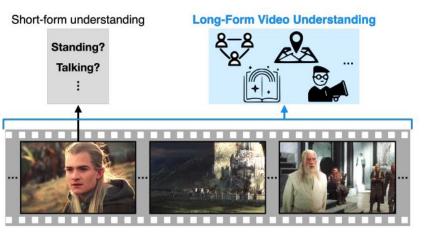
Theory

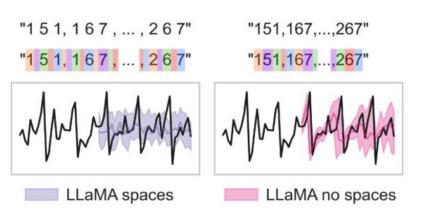
- 3. Theoretical exploration of ZSQ
 - ZSQ lacks formal understanding such as convergence guarantees or error bounds
 - Mathematical principles would guide towards robust algorithms



Problem Setting

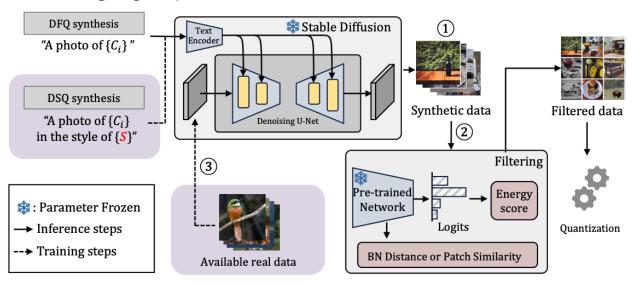
- 4. Broader application to various tasks and domains
 - Most research sets task \mathcal{T} as image classification, with a few work on object detection
 - Extending research to various tasks is crucial
 - Other vision tasks
 - Language, multi-variate, graph domains





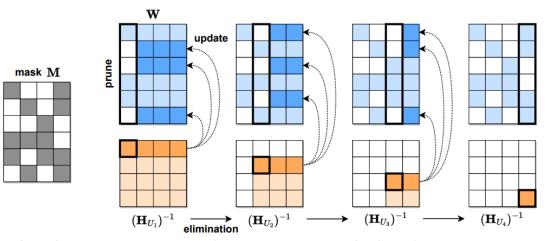
Problem Setting

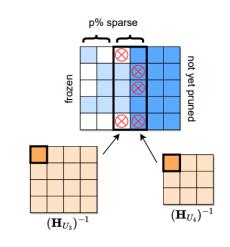
- 5. Diverse problem settings
 - Extending ZSQ to real-time quantization and edgedevice deployments
 - e.g., few-instance quantization (1 to 10 real images),
 leveraging a pre-trained diffusion model for dataset synthesis



Problem Setting

- 6. Combining other model compression techniques
 - Current ZSQ algorithms achieve competitive results in 4-bit regime, but struggle in 3-bit or lower-bits
 - Integrating with other methods would help to achieve a higher compression rate while maintaining accuracy
 - e.g., pruning, weight sharing, low-rank approximation





Evaluation

- 7. Evaluating practical impact on real-world scenarios
 - The importance of ZSQ lies in its applications for handling real-world scenarios with limited data
 - However, current ZSQ methods present experimental results solely on benchmark datasets and models



Outline

- Introduction
- Problem Formulation
- Categorization
- ZSQ Algorithms
- Future Research Directions
- **→** Conclusion

- We provide a comprehensive survey of ZSQ
 - ZSQ enables model compression without access to real data

Main Challenges

- Knowledge transfer from the pre-trained model
- Discrepancy between real and synthetic datasets
- Diversity of the problem setting
- Future work aims to improve synthetic data, theory, problem setting, and practical evaluation

Thank you!

Minjun Kim (minjun.kim@snu.ac.kr)

Paper

GitHub

