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Overview

■ We survey Zero-shot Quantization (ZSQ), 

a data-free model compression paradigm
■ ZSQ faces three key challenges: knowledge transfer, 

synthetic-real discrepancy, and task adaptability

■ We categorize and review ZSQ methods in three 

main groups
■ Synthesis-free, generator-based, and noise-optimization

■ We discuss current limitations and future directions
■ Improving synthetic dataset, theory, problem setting, and 

evaluation remain open research questions
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Model Compression

■ Task: Deploying neural networks on resource-

constrained edge devices is challenging

■ Various model compression techniques:
■ Quantization

■ Pruning

■ Knowledge distillation

■ Low-rank approximation

■ Parameter sharing

■ Efficient architecture design

■ and more…
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Quantization

■ Quantization methods represent a full-precision 

model with lower-bit formats
■ High compression and acceleration rate with minimal 

performance degradation

■ e.g., 32-bit model ➔ 4-bit quantization: 8× compression 

S. Park et al., “A Comprehensive Survey of Compression Algorithms for Language Models”, arXiv:2401.15347

https://arxiv.org/abs/2401.15347
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Zero-shot Quantization

■ Zero-shot Quantization (ZSQ) achieves quantization 

without requiring any real data
■ Limitation of existing methods. the dependence on 

training data

■ Privacy or policy issues may block access to data
■ e.g., medical records, confidential business information

R. Kundu, “The Essential Guide to Zero-Shot Learning”, V7 Blog, Jan 6, 2022
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■ 25+ paper in major venues since DFQ [ICCV 2019]

■ Rapid growth in research

■ Limitation. Existing surveys focus on broader topics

■ e.g., model compression or network quantization

Survey on ZSQ
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■ We conduct the first in-depth survey on ZSQ

■ Formulation. We formulate the ZSQ problem and 

explore three critical challenges

■ Categorization. We categorize ZSQ algorithms based 

on their data generation strategies

■ Analysis. We analyze current ZSQ algorithms, 

highlighting their motivations, ideas, and key findings

■ Discussion. We outline future research questions to 

guide research toward impactful advancements

Survey on ZSQ
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■ Min-max Uniform Quantization (Input: 𝐖,𝐵➔ Output: 𝐖𝑞)

𝑾𝑞 =
𝐖

𝑠
− 𝑧 +

1

2
,  𝑠 =

𝛽−𝛼

2𝐵−1
,  𝑧 =

𝛼

𝑠
+ 2𝐵−1

■ 𝐖: weight matrix of the full precision model

■ 𝐖𝑞: 𝐵-bit quantized matrix of 𝐖

■ 𝐵: quantization bits

■ 𝑠: scaling factor

■ 𝑧: integer offset

■ 𝛼: minimum value in 𝑾

■ 𝛽: maximum value in 𝑾

Preliminaries
Network Quantization

S. Park et al., “A Comprehensive Survey of Compression Algorithms for Language Models”, arXiv:2401.15347

https://arxiv.org/abs/2401.15347


Minjun Kim (SNU) 11

■ Quantization methods are classified into two 

settings by their need of additional fine-tuning

■ QAT (Quantization-Aware Training). First quantize the 

model, then fine-tune the weight parameters

■ Rely on min-max quantization

■ PTQ (Post-Training Quantization). No additional 

training required

■ e.g., adaptive rounding, block reconstruction, random dropping

Preliminaries
QAT and PTQ
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Problem Definition
Zero-shot Quantization

■ Given

■ A model 𝜃 trained on a task 𝒯

■ Quantization bits 𝐵

■ Generate 

■ a quantized model 𝜃𝑞 within the 𝐵-bit limit for 

maximum accuracy on 𝒯 without the use of real data
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■ ZSQ algorithms should overcome key challenges 

that arise due to the absence of real data

■ 1. Knowledge transfer from the pre-trained model

■ 2. Discrepancy between real and synthetic datasets

■ 3. Diversity of the problem setting

Main Challenges of ZSQ
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■ How do we transfer knowledge without real data?

■ Quantized model must preserve original behaviors

■ Challenge. No real data for alignment or calibration

■ Solution Direction. Adapt synthetic data, distillation 

losses, or architectural constraints to mimic the original

Main Challenges of ZSQ
Knowledge transfer from the pre-trained model

J. Gou et al., “Knowledge Distillation: A Survey”, IJCV 2021 Without data
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■ Synthetic data doesn't match real data distributions

■ Challenge. Models quantized with synthetic data may 

underperform on real-world tasks

■ Solution Direction. Improving the quality of synthetic 

data or dataset reduces performance degradation

■ e.g., noise in image, intra-class heterogeneity

Main Challenges of ZSQ
Discrepancy between real and synthetic datasets

M. Kim et al., “SynQ: Accurate Zero-shot Quantization by Synthesis-aware Fine-tuning”, ICLR 2025
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■ ZSQ should generalize to various architectures, 

tasks, and quantization bit-widths

■ Challenge. Some algorithms work only for specific settings

■ Solution Direction. Develop universal frameworks or 

adaptable techniques

■ e.g., ViT-specific method due to patch-wise operation  

Main Challenges of ZSQ
Diversity of the problem setting

Z. Hu et al., “Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications”, ICML 2024
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■ We categorize ZSQ algorithms based on their data 

generation approach as:

■ Synthesis-free ZSQ

■ Quantize models without generating 

any synthetic data

■ Generator-based ZSQ

■ Train an additional generator 𝒢
to produce synthetic data

■ Noise-optimization-based ZSQ

■ Directly optimize noise inputs to 

make synthetic data

Taxonomy
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■ We summarize the key features of ZSQ methods

■ 1. Data Generation Approach

Taxonomy

Synthesis-

free

Generator-

based

Noise-

optimization
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■ We summarize the key features of ZSQ methods

■ 2. Training Requirement

Taxonomy

PTQ

QAT
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■ We summarize the key features of ZSQ methods

■ 3. Scope of Contribution

Taxonomy

S: Data 

Synthesis

Q: Network

Quantization
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■ We summarize the key features of ZSQ methods

■ 4. Architecture of the Target Network

Taxonomy

CNN

ViT
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■ We summarize the key features of ZSQ methods

■ 5. Performance with the Number of Synthetic Images

Taxonomy

Classification accuracy 

of a ResNet-18 model 
trained on ImageNet

* W8A8 on CIFAR-100
† W8A8/W4A8 of DeiT-T
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■ We categorize ZSQ algorithms based on their data 

generation approach as:

■ Synthesis-free ZSQ

■ Quantize models without generating 

any synthetic data

■ Generator-based ZSQ

■ Train an additional generator 𝒢
to produce synthetic data

■ Noise-optimization-based ZSQ

■ Directly optimize noise inputs to 

make synthetic data

Taxonomy
Revisited
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■ Synthesis-free ZSQ methods compress a pre-

trained model without generating any synthetic data

■ They leverage structural properties or theoretical 

foundations to mitigate performance degradation

■ Representative method. SQuant [ICLR 2022]

■ Evaluating the quantization error with the Hessian of each layer

■ Diagonal Hessian approximation for efficient computation

ZSQ Algorithms
Synthesis-free ZSQ

C. Guo et al., “SQuant: On-the-Fly Data-Free Quantization via Diagonal Hessian Approximation”, ICLR 2022
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■ Generator-based ZSQ employs an independent 

generator model 𝒢 to produce synthetic datasets

■ Generally, they train a GAN-based generator from scratch

■ Representative method. AdaSG [AAAI 2023]

■ Reformulating ZSQ into a zero-sum game between the 

generator 𝒢 and the quantized model 𝜃𝑞 on reward ℛ(⋅)

■ Adversarial sample generation

ZSQ Algorithms
Generator-based ZSQ

B. Qian et al., “Rethinking Data-Free Quantization as a Zero-Sum Game”, AAAI 2023

min
𝜃𝑞

max
𝒢

ℛ 𝒢, 𝜃𝑞
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■ Noise-optimization-based ZSQ directly optimizes 

noise to generate the dataset from iterative updates

■ They universally follow a two-step scheme:

■ 1. Dataset synthesis → 2. Model quantization

■ Representative method. HAST [CVPR 2023]

■ Previous methods perform poorly on difficult images, since their 

synthetic datasets lack challenging samples

■ Produce more samples difficult for both original / quantized models

ZSQ Algorithms
Noise-optimization-based ZSQ

H. Li et al., “Hard Sample Matters a Lot in Zero-Shot Quantization”, CVPR 2023
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■ Research questions remain open for exploration

■ Synthetic datasets

■ 1. More principled analysis on synthetic datasets

■ 2. Faster generation of synthetic datasets

■ Theory

■ 3. Theoretical exploration of ZSQ

■ Problem setting

■ 4. Broader application to various tasks and domains

■ 5. Diverse problem settings

■ 6. Combining other model compression techniques

■ Evaluation

■ 7. Evaluating practical impact on real-world scenarios

Future Directions
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■ 1. More principled analysis on synthetic datasets

■ Most studies fix individual features instead of 

investigating their root causes

■ Deeper analysis may yield fundamental improvements

Future Directions
Synthetic Datasets

Y. Zhong et al., “IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization”, CVPR 2022
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■ 2. Faster generation of synthetic datasets

■ Increasing the size of synthetic datasets enhances the 

performance of quantized models

■ How can we reduce the generation time?

■ 1 to 4 GPU hours required to generate 5k 224×224 images 

Future Directions
Synthetic Datasets

M. Kim et al., “SynQ: Accurate Zero-shot Quantization by Synthesis-aware Fine-tuning”, ICLR 2025
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■ 3. Theoretical exploration of ZSQ

■ ZSQ lacks formal understanding such as convergence 

guarantees or error bounds

■ Mathematical principles would guide towards robust algorithms

Future Directions
Theory



Minjun Kim (SNU) 34

■ 4. Broader application to various tasks and domains

■ Most research sets task 𝒯 as image classification, with a 

few work on object detection

■ Extending research to various tasks is crucial

■ Other vision tasks

■ Language, multi-variate, graph domains

Future Directions
Problem Setting

C. Wu et al., “Towards Long-Form Video Understanding”, CVPR 2021

N. Gruver et al., “Large Language Models Are Zero-Shot Time Series Forecasters”, NeurIPS 2023
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■ 5. Diverse problem settings

■ Extending ZSQ to real-time quantization and edge-

device deployments

■ e.g., few-instance quantization (1 to 10 real images), 

leveraging a pre-trained diffusion model for dataset synthesis

Future Directions
Problem Setting

Y. Li et al., “GenQ: Quantization in Low Data Regimes with Generative Synthetic Data”, ECCV 2024
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■ 6. Combining other model compression techniques

■ Current ZSQ algorithms achieve competitive results 

in 4-bit regime, but struggle in 3-bit or lower-bits

■ Integrating with other methods would help to achieve a 

higher compression rate while maintaining accuracy

■ e.g., pruning, weight sharing, low-rank approximation

Future Directions
Problem Setting

E. Frantar et al., “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot”, ICML 2023
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■ 7. Evaluating practical impact on real-world scenarios

■ The importance of ZSQ lies in its applications for 

handling real-world scenarios with limited data

■ However, current ZSQ methods present experimental 

results solely on benchmark datasets and models

Future Directions
Evaluation

J.-H. Wu et al., “ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation”, CVPR 2024
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Conclusion

■ We provide a comprehensive survey of ZSQ

■ ZSQ enables model compression without access to real data

■ Main Challenges

■ Knowledge transfer from the pre-trained model

■ Discrepancy between real and synthetic datasets

■ Diversity of the problem setting

■ Future work aims to improve synthetic data, theory,  

problem setting, and practical evaluation
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Thank you !

Minjun Kim (minjun.kim@snu.ac.kr)

GitHubPaper
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