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Abstract
Network quantization has proven to be a powerful
approach to reduce the memory and computational
demands of deep learning models for deployment
on resource-constrained devices. However, tradi-
tional quantization methods often rely on access to
training data, which is impractical in many real-
world scenarios due to privacy, security, or reg-
ulatory constraints. Zero-shot Quantization (ZSQ)
emerges as a promising solution, achieving quanti-
zation without requiring any real data. In this pa-
per, we provide a comprehensive overview of ZSQ
methods and their recent advancements. First, we
provide a formal definition of the ZSQ problem
and highlight the key challenges. Then, we catego-
rize the existing ZSQ methods into classes based
on data generation strategies, and analyze their mo-
tivations, core ideas, and key takeaways. Lastly, we
suggest future research directions to address the re-
maining limitations and advance the field of ZSQ.
To the best of our knowledge, this paper is the first
in-depth survey on ZSQ.

1 Introduction
How can we accurately quantize a pre-trained model with-

out any data? Recent advancements in deep neural net-
works, including architectures like Convolutional Neural Net-
works (CNNs) [He et al., 2016] and Vision Transformers
(ViTs) [Dosovitskiy et al., 2020], have achieved the state-
of-the-art results in various applications ranging from image
classification to visual question answering [Liu et al., 2023].
However, deploying these models on resource-constrained
edge devices remains a significant challenge due to their high
memory and computational requirements. Model compres-
sion has emerged as a key technique to address these chal-
lenges, offering solutions that reduce model size and com-
putational demands [Gholami et al., 2022; Jang et al., 2023;
He and Xiao, 2024]. Among various compression strategies,
network quantization [Li et al., 2021a; Piao et al., 2022]
stands out by converting high-precision models into a low-
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Figure 1: Comparison between three categories of Zero-shot
Quantization (ZSQ): (a) synthesis-free, (b) generator-based,
and (c) noise-optimization-based ZSQ methods.

bit format, offering high compression and faster inference
with minimal performance drop, compared to alternatives
such as pruning [Park et al., 2024a; He and Xiao, 2024; Park
et al., 2025] and knowledge distillation [Tran et al., 2022;
Cho and Kang, 2022; Xie et al., 2023; Jeon et al., 2023a].

Zero-shot Quantization (ZSQ) [Nagel et al., 2019], also
called data-free quantization, addresses a critical limitation in
traditional quantization techniques: the dependence on train-
ing data. This is particularly valuable in scenarios where
access to original training datasets is restricted due to pri-
vacy, security, or regulatory concerns [Sharma et al., 2021].
These limitations are especially pronounced in industries like
healthcare, finance, and enterprise services, where sensitive
or proprietary data cannot be leveraged for additional model
calibration. Moreover, ZSQ enables the deployment of per-
sonalized AI systems, such as mobile AI assistants or security
cameras, ensuring efficient performance without compromis-
ing data privacy or requiring access to sensitive datasets.



Building upon foundational works [Nagel et al., 2019;
Yoo et al., 2019; Xu et al., 2020], numerous studies have fur-
ther developed the field of ZSQ. With the rapid growth in
research, it has become challenging for researchers to under-
stand the overall trends and essential takeaways of individual
studies. However, existing surveys focus on broader topics
such as general model compression [Deng et al., 2020; Park
et al., 2024b] or network quantization [Gholami et al., 2022;
Li et al., 2024a], offering only a brief exploration of ZSQ as a
subtopic. This limited coverage restricts researchers from ex-
ploring current extent of ZSQ research, distinguishing their
key findings, and determining directions for future research.

In this paper, we conduct a comprehensive and structured
survey of ZSQ methods. We start by formulating the ZSQ
problem and exploring three critical challenges. Next, we
summarize existing ZSQ methods (see Table 1) and catego-
rize them based on their data generation strategies: synthesis-
free, generator-based, and noise-optimization-based methods.
We illustrate the overall process of each category in Figure 1.
Then, an in-depth examination of these approaches follows,
highlighting their motivations, main ideas, and key insights.
Lastly, we propose promising directions for future research,
emphasizing unexplored challenges and application scenar-
ios. Our contributions are summarized as follows:
• Overview. We identify major trends in ZSQ algorithms,

covering diverse data generation approaches and training
scenarios (see Figure 1 and Table 1).

• Analysis. We provide a comprehensive review of current
ZSQ algorithms, highlighting their motivations, principal
ideas, and key findings (see Sections 4, 5, and 6).

• Discussion. We outline future research directions to ad-
vance ZSQ, aiming to guide research toward impactful ad-
vancements over current limitations (see Section 7).

2 Problem Formulation
We describe the preliminaries, formulate the ZSQ problem,

and discuss the three major challenges that arise in solving it.

2.1 Preliminaries

Network Quantization. Network quantization improves the
memory usage and computational efficiency of neural net-
works by encoding the weight and activations of a given
higher-bit network within a lower-bit format. Quantizing a
matrix W to Bbit precision involves first rescaling its values
to fit within the interval [−2B−1, 2B−1 − 1]. Each weight is
then discretized by mapping to the nearest available integer
[Gupta et al., 2015]. Given a matrix W, the Bbit quantized
matrix Wq is calculated as shown in Equation 1.

Wq = ⌊W
s

+ z +
1

2
⌋, (1)

where scaling factor s = (β − α)/(2B − 1), zero-point
z = −2B−1 − α/s, and [α, β] denotes the clipping range.
Properly choosing the clipping range [α, β] is essential as it
defines s and z required for accurate quantization. A straight-
forward yet widely adopted approach, known as min-max
quantization, involves setting α and β to the minimum and
maximum values of W, respectively.

QAT and PTQ. Quantization methods are divided into
Quantization-aware Training (QAT) and Post-training Quan-
tization (PTQ) based on their training requirements. QAT in-
corporates quantization during fine-tuning, optimizing model
performance under quantization constraints while demand-
ing greater computational resources. In contrast, PTQ is a
lightweight approach that quantizes a pre-trained model with-
out additional fine-tuning, making it fast but prone to per-
formance drop. In ZSQ, while QAT methods rely on min-
max quantization, PTQ methods employ advanced techniques
such as adaptive rounding [Nagel et al., 2020], block recon-
struction [Li et al., 2021a], and random dropping [Wei et al.,
2022], often leading to better performance.

2.2 Zero-shot Quantization
Given a pre-trained model, Zero-shot Quantization (ZSQ)

problem aims to perform network quantization without re-
lying on any real data. The pre-trained model may address
different target tasks, such as image classification, object de-
tection, and semantic segmentation. We provide the formal
definition in Problem 1.
Problem 1 (Zero-shot Quantization). We have a model θ
trained on a task T and quantization bits B. The goal is to
generate a quantized model θq within a Bbit limit without the
use of real data, which shows the best performance on T .

2.3 Main Challenges of ZSQ
Addressing ZSQ requires overcoming key challenges that

arise due to the absence of real data. This survey highlights
how existing approaches tackle the following challenges:
• Knowledge transfer from the pre-trained model. ZSQ

relies solely on the information contained in the pre-trained
model to recover quantization errors in the absence of real
data. Therefore, effectively transferring the knowledge, fea-
tures, or intrinsic characteristics of the pre-trained model
to the quantized model is necessary. Ensuring this transfer
without performance degradation remains a critical issue.

• Discrepancy between real and synthetic datasets. With
no access to real datasets, most ZSQ approaches gener-
ate synthetic datasets to fine-tune or calibrate the quantized
model. However, synthetic datasets differ significantly from
real-world datasets in various aspects, resulting in severe
performance degradation. Thus, reducing these disparities
to improve the quality of synthetic datasets is crucial.

• Diversity of the problem setting. The scope of the ZSQ
problem covers a wide range of tasks, model architectures,
experimental conditions, and quantization schemes. Hence,
it is essential yet challenging to design ZSQ methods that
are not only tailored to particular scenarios but also adapt-
able to diverse tasks or domains.

3 Categorization
We categorize existing ZSQ algorithms based on the data

generation approach of each algorithm as synthesis-free
(see Section 4), generator-based (see Section 5), and noise-
optimization-based (see Section 6) methods. Furthermore, for
each category, the methodologies are divided into zero-shot
QAT and zero-shot PTQ based on their training requirements.



Table 1: A summary of Zero-shot Quantization (ZSQ) methods. WBAB indicates that weights and activations are quantized to
Bbit. We compare the ZSQ accuracy [%] of a ResNet-18 model pre-trained on ImageNet dataset. See Section 3 for details.

Method Venue
Training Scope of

Architecture # Images
Accuracy (FP = 71.47)

Requirement Contribution W4A4 W3A3
Synthesis-free ZSQ

DFQ [2019] ICCV PTQ Q CNN 0 55.78 -
SQuant [2022] ICLR PTQ Q CNN 0 66.14 25.74
UDFC [2023] ICCV PTQ Q CNN 0 63.49 -

Generator-based ZSQ

GDFQ [2020] ECCV QAT S, Q CNN 1.28M 60.60 20.23
ZAQ [2021] CVPR QAT S, Q CNN 1.28M 52.64 -
ARC [2021] IJCAI QAT S, Q CNN 1.28M 61.32 23.37
Qimera [2021] NeurIPS QAT S, Q CNN 1.28M 63.84 1.17
ARC + AIT [2022] CVPR QAT Q CNN 1.28M 65.73 -
AdaSG [2023b] AAAI QAT S, Q CNN 1.28M 66.50 37.04
AdaDFQ [2023a] CVPR QAT S, Q CNN 1.28M 66.53 38.10
Causal-DFQ [2023] ICCV QAT S, Q CNN 1.28M 68.11 -
RIS [2024] AAAI QAT S CNN 1.28M 67.75 -
GenQ [2024b] ECCV PTQ / QAT S CNN 1K§ 69.77§ -

Noise-optimization-based ZSQ

DeepInversion [2020] CVPR QAT S CNN 32 70.27∗ 64.28†

IntraQ [2022] CVPR QAT S, Q CNN 5.12K 66.47 45.51
HAST [2023] CVPR QAT S, Q CNN 5.12K 66.91 51.15
TexQ [2023] NeurIPS QAT S, Q CNN 5.12K 67.73 50.28
PLF [2024] CVPR QAT Q CNN 5.12K 67.02 -
SynQ [2025b] ICLR QAT Q CNN / ViT 5.12K 67.90 52.02
ZeroQ [2020] CVPR PTQ S, Q CNN 1K 26.04 -
KW [2020] CVPR PTQ S, Q CNN 1K 69.08 -
DSG [2021] CVPR PTQ S CNN 1K 34.53 -
MixMix [2021b] ICCV PTQ / QAT S CNN 1K§ 69.46§ -
PSAQ-ViT [2022] ECCV PTQ S ViT 32 71.56∗ 65.57†

Genie [2023b] CVPR PTQ S, Q CNN 1K 69.66 66.89
SADAG [2024] ICML PTQ S, Q CNN 1K 69.72 67.10
SMI [2024] ICML PTQ S ViT 32 70.13∗ 64.04†

CLAMP-ViT [2024] ECCV PTQ S, Q ViT 32 72.17∗ 69.93†

∗ W8A8 accuracy of DeiT-Tiny [2021] model, † W4A8 accuracy of DeiT-Tiny [2021] model, § PTQ setting.

We summarize the key features of ZSQ methods and com-
pare their performance in Table 1. “Scope of Contribution”
identifies whether the main contribution of each method is for
data synthesis (S) or network quantization (Q). “Architecture”
specifies the type of neural network architecture the method is
applied to, such as CNN or ViT. Also, we evaluate the 3- and
4-bit ZSQ accuracy of a ResNet-18 model [He et al., 2016]
pre-trained on ImageNet dataset [Deng et al., 2009] for fair
benchmarking across methods. We provide the total number
of synthetic samples required to achieve the reported perfor-
mance as “# Images”. For ViT-specific approaches, their ZSQ
performance of a DeiT-Tiny model [Touvron et al., 2021] pre-
trained on the ImageNet dataset is reported.

4 Synthesis-free ZSQ

Synthesis-free ZSQ methods compress a pre-trained model
without generating any synthetic data. These approaches mit-
igate quantization-induced performance degradation by lever-
aging structural properties and theoretical foundations of the
pre-trained model without generating any synthetic data.

DFQ [Nagel et al., 2019] is a per-tensor weight quantiza-
tion method that minimizes quantization error through cross-
layer equalization and bias correction. Per-tensor quantiza-
tion inherently results in higher quantization errors for chan-
nels with narrow value ranges when grouped with broader-
range channels, as distinct weights are compressed into
overly coarse bins. DFQ addresses this challenge by equal-
izing the ranges of channel pairs in consecutive layers and
adjusting the bias term of each layer based on batch normal-
ization statistics. DFQ is the first approach to perform weight
quantization without any datasets.

SQuant [Guo et al., 2022] enhances the computational
efficiency of Hessian-based quantization by exploiting the
structural characteristics of CNNs. Hessian-based methods
effectively optimize quantized models by evaluating the
quantization error with the second-order derivative matrix of
each weight, but they suffer from substantial computational
overhead due to extensive matrix operations. SQuant im-
proves computational efficiency by performing diagonal Hes-
sian approximation at multiple levels and reduces quantiza-
tion error by selectively flipping weight signs in decomposed



Hessian matrices. SQuant critically improves the efficiency
of Hessian-based quantization without data dependency.

UDFC [Bai et al., 2023] proposes a hybrid model com-
pression algorithm that integrates pruning and quantization
techniques. UDFC addresses the damage resulting from prun-
ing or quantization by leveraging the weighted combination
of remaining undamaged channels. Specifically, after prun-
ing or quantizing the lth layer, UDFC adjusts the (l + 1)th
layer through a theoretically derived closed-form solution to
reduce reconstruction error. UDFC introduces the first uni-
fied approach for combining both quantization and pruning
in a zero-shot compression setting.

5 Generator-based ZSQ
Generator-based ZSQ methods employ an independent

generator model G to produce synthetic datasets for quan-
tizing pre-trained models. Specifically, they generally train
a Generative Adversarial Network (GAN)-based genera-
tor [Goodfellow et al., 2014] such as DCGAN and ACGAN
from scratch. An ideal generator G would generate a syn-
thetic dataset {(xi, yi)}Ni=1 with a distribution that closely re-
sembles a real dataset. Therefore, generator-based algorithms
aim to train a generator G to produce synthetic datasets that
closely match real data distributions by incorporating crucial
information extracted from pre-trained models. One exam-
ple of such information that is commonly important for quan-
tizing CNN models is Batch Normalization Statistics (BNS).
BNS refers to the mean and variance calculated during CNN
training, which reflects the distribution of the training data
processed by each batch normalization layer. Many studies
reduce the L2 norm between the BNS of real and synthetic
datasets across all L layers, enforcing a regularization con-
straint on the synthetic dataset during updates.

5.1 Generator-based Zero-shot QAT
Most generator-based algorithms generate images at each

step to refine a generator model to mimic real data accu-
rately. Instead of fine-tuning the quantized model only with
the final images from the trained generator, QAT methods ex-
ploit images produced at every training stage of the generator
as they inherently retain the pre-trained model’s knowledge.
Specifically, these approaches involve alternating or adver-
sarial learning to balance quantization efficiency and output
quality. Generator-based QAT methods share an identical ex-
perimental setup with 1.28M synthetic images produced over
400 epochs, each consisting of 200 batches of 16 samples.

GDFQ [Xu et al., 2020] is the first ZSQ method that in-
corporates a generator to produce a synthetic dataset. GDFQ
refines the generator and the quantized model through alter-
nating optimization. The generator aims to produce synthetic
data that allows the pre-trained model to predict labels ac-
curately, while the quantized model learns to classify these
synthetic images correctly to minimize the performance gap.
This strategy progressively improves both data quality and
model performance, achieving robust performance.

ZAQ [Liu et al., 2021] employs adversarial learning to
optimize quantization by introducing competition between a
generator and a quantized model. Adversarial learning fol-

lows a minimax optimization, where the generator maximizes
the performance gap between the pre-trained and quantized
models while the quantized model refines itself to minimize
it. Additionally, ZAQ incorporates activation regularization to
guide the generator and feature-level knowledge distillation
to better encourage the quantized model to mimic the pre-
trained model. This adversarial learning framework serves as
a basis for generator-based ZSQ research, accelerating the ad-
vancement of optimization algorithms in this domain.

ARC [Zhu et al., 2021] or AutoReCon automatically de-
termines a generator architecture by leveraging neural archi-
tecture search. Most existing techniques employ GAN-based
architectures tailored for image generation instead of model
compression. To resolve this issue, ARC employs neural ar-
chitecture search to find generator architectures suited for
compression. With an optimal generator, ARC outperforms
existing methods in 3-bit quantization by up to 11%p.

Qimera [Choi et al., 2021] trains a generator to pro-
duce boundary supporting samples, aiming to improve quan-
tization performance. Boundary supporting samples are lo-
cated near the decision boundaries of the pre-trained model;
however, existing methods lack such samples in synthetic
datasets, which limits the ability of the quantized model to
learn the decision boundaries of the pre-trained model effec-
tively. To address this limitation, Qimera encourages the gen-
erator to synthesize samples near the decision boundaries by
utilizing superposed latent embeddings. Qimera, when com-
bined with existing ZSQ methods, improves up to 9%p in
quantization performance under 4-bit quantization settings.

AIT [Choi et al., 2022] emphasizes that Cross-Entropy
(CE) loss hinders the optimization process when training
quantized models with synthetic datasets. While previous ap-
proaches employ both CE and Kullback–Leibler divergence
(KL) losses to optimize quantized models, the authors ob-
serve two key points: 1) the conflict between CE and KL
losses, and 2) the superior generalizability of KL loss. Mo-
tivated by these observations, AIT eliminates the CE loss
and focuses exclusively on KL loss to optimize the quantized
model. Additionally, it manipulates gradients to ensure that
a minimum ratio of integer values in the quantized model
is updated during each optimization step, thereby enhanc-
ing optimization efficiency. AIT integrates easily with other
generator-based ZSQ methods to improve performance and
promote optimization efficiency.

AdaSG [Qian et al., 2023b] measures ‘sample adaptabil-
ity,’ which is the contribution of synthetic images in training
quantized models, and proposes a novel optimization algo-
rithm for this metric. Existing ZSQ methods fail to fully re-
cover performance degradation caused by quantization since
they neglect the characteristics of quantized models dur-
ing synthetic image generation. AdaSG incorporates sam-
ple adaptability by reformulating the ZSQ problem into a
zero-sum game between the generator and the quantized
model. AdaSG presents the first game-theoretical formulation
of the ZSQ problem, establishing a novel problem-solving
paradigm based on sample adaptability.

AdaDFQ [Qian et al., 2023a] proposes a boundary-
based optimization method that achieves stable optimization
through effectively controlling sample adaptability. Existing



ZSQ methods that incorporate sample adaptability encounter
optimization instability, leading to either overfitting or under-
fitting issues. AdaDFQ defines two boundaries determined
by agreement and disagreement based on the predictions of
pre-trained and quantized models, and optimizes the margin
between these boundaries to ensure that generated samples
maintain adaptability with respect to the quantized model.
AdaDFQ enhances the stability of the optimization process
in ZSQ while maintaining sample adaptability through its
boundary-based optimization approach.

Causal-DFQ [Shang et al., 2023] introduces causal rea-
soning to disentangle content and style for improving syn-
thetic dataset quality. Content captures task-relevant features,
while style represents irrelevant attributes that do not influ-
ence model decisions. Unlike existing methods that rely on
only statistical information (e.g., BNS), Causal-DFQ models
these factors separately by constructing a causal graph. It de-
signs a content-style-decoupled generator to synthesize im-
ages by independently modulating content and style. This is
the first approach to introduce causal relationships in ZSQ,
enhancing the diversity and robustness of synthetic data.

RIS [Bai et al., 2024] encourages the generator to produce
diverse synthetic images that contain semantic information.
The authors observe that synthetic images are more vulner-
able to perturbations compared to real images, indicating a
lack of semantic information. RIS explicitly models robust-
ness against perturbations at both feature and prediction lev-
els by applying perturbations to synthetic images and weights
of pre-trained models. Furthermore, RIS employs soft labels
instead of hard labels as input to the generator to facilitate the
creation of diverse synthetic images. RIS demonstrates that
training generators to produce perturbation-robust synthetic
images improves the performance of quantized models.

5.2 Generator-based Zero-shot PTQ

Some generator-based ZSQ methods adopt PTQ scheme
by generating synthetic datasets using a pre-trained genera-
tor, such as diffusion model, as this approach does not require
a training process. Consequently, they adopt PTQ scheme ef-
fectively leveraging characteristics of the synthetic datasets
and the architecture of the pre-trained model.

GenQ [Li et al., 2024b] introduces a novel approach to
synthesizing reliable data using diffusion-based text-to-image
models. Existing methods struggle to generate semantically
rich, high-resolution data due to the complexity of mapping
low-dimensional labels to high-dimensional images, resulting
in distribution gaps compared to real data. GenQ addresses
this challenge by generating a synthetic dataset with Stable
Diffusion, introducing three filtering techniques to minimize
distribution gaps and improve the quality of synthetic data: 1)
energy score filtering, which identifies in-distribution data by
measuring the confidence of model predictions through en-
ergy scores, 2) BNS distribution filtering, which aligns the ac-
tivation statistics of synthetic data with those of real data, and
3) patch similarity filtering, which ensures diversity in visual
representations for ViTs. GenQ pioneers using text-to-image
diffusion models to generate synthetic data for ZSQ, main-
taining high quantization accuracy across varied settings.

6 Noise-optimization-based ZSQ
Noise-optimization-based ZSQ algorithms directly opti-

mize noise to generate the synthetic dataset by iteratively up-
dating the input itself rather than the parameters of a gen-
erator model. They universally follow a two-step scheme by
first optimizing randomly initialized noise to generate a syn-
thetic dataset {(xi, yi)}Ni=1 with size N (step 1: dataset syn-
thesis) and then quantizing the pre-trained model with those
samples (step 2: model quantization). Similar to generator-
based methods, BNS loss serves as the baseline loss, align-
ing the statistics of all L batch normalization layers between
synthetic and real datasets. Additionally, Inception Loss (IL)
is optimized to reduce the cross-entropy between sample la-
bels {yi}Ni=1 and predictions {p(xi; θ)}Ni=1 of the pre-trained
model θ, encouraging the model to incorporate class-specific
details. The main focus is to produce a synthetic dataset that
mimics the training dataset of the pre-trained model; each
algorithm identifies and mitigates the key discrepancies be-
tween real and synthetic datasets.

6.1 Noise-optimization-based Zero-shot QAT
Following dataset synthesis, QAT methods first simply

quantize the pre-trained model following min-max quantiza-
tion and then fine-tune it with the synthetic dataset. These
methods share a common experimental setting generating a
total of 5,120 images, given that a larger synthetic dataset re-
sults in higher model accuracy.

DeepInversion [Yin et al., 2020] pioneers the genera-
tion of synthetic datasets for knowledge transfer in scenar-
ios without prior data. The method has two objectives: en-
forcing feature similarity at all layers between real and syn-
thetic datasets with BNS loss, and generating samples that
challenge the quantized model but align with the pre-trained
model by penalizing output distribution similarities between
the models through training competition. DeepInversion is a
general framework that generates a synthetic dataset to trans-
fer knowledge from pre-trained models, applicable not only
to ZSQ but also to various data-free tasks such as pruning,
knowledge distillation, and continual learning.

IntraQ [Zhong et al., 2022] identifies intra-class hetero-
geneity as a key factor for improving synthetic dataset qual-
ity. Most approaches generate consistent samples within each
class because they prioritize overall dataset distribution and
inter-class separation. IntraQ promotes intra-class diversity
by varying object scale and location with local object rein-
forcement, distributing class features broadly across images
with a marginal distance constraint, and mitigating overfitting
with soft IL. Their findings stand out through their high per-
formance, advancing beyond traditional methods which face
challenges with bit assignments under 4bit, and taking the
first step into extreme low-bit ZSQ at 3bit.

HAST [Li et al., 2023] highlights that including hard sam-
ples in a synthetic dataset enhances ZSQ performance. Previ-
ous methods perform poorly on hard images, where the dif-
ficulty of an image [Li et al., 2019] indicates how likely a
model is to misclassify it, because their synthetic datasets
lack challenging samples. Therefore, HAST increases the
portion of difficult samples within the synthetic dataset for



both pre-trained and quantized models by optimizing hard-
sample-enhanced IL and promoting sample difficulty, respec-
tively. HAST shows outstanding performance, comparable to
that of fine-tuning with real datasets.

TexQ [Chen et al., 2023] focuses on minimizing discrepan-
cies in the distributions of texture features. Texture describes
the spatial arrangement of pixel intensities forming visual pat-
terns, vital for CNNs which classify images based on surface
characteristics; prior methods often underperform due to in-
sufficient texture features in the synthetic dataset. TexQ re-
solves this issue by directing samples to accurate per-class
calibration centers, ensuring texture alignment with LAWS
energy loss, and containing texture features in shallow lay-
ers with layered BNS loss. The authors empirically validate
that adding sufficient texture features enhances inter-class
distance, leading to better ZSQ performance.

PLF [Fan et al., 2024] is the first approach to evaluate the
synthetic dataset before quantization. After synthesizing the
dataset, PLF separates it into high- and low-reliable groups
based on self-entropy computed from the probabilities of a
pre-trained model, where lower self-entropy indicates more
confident predictions. Then, PLF assigns the second highest
probability label as an auxiliary label for low-reliable data to
soften supervised learning and reduce the risk from mislead-
ing labels. Unlike methods such as HAST, which determine
confidence based on image difficulty [Li et al., 2019], PLF
adopts self-entropy to measure confidence effectively.

SynQ [Kim et al., 2025b] emphasizes three major limita-
tions when fine-tuning with synthetic datasets: mismatches
of amplitude distribution in the frequency domain, predic-
tions based on off-target patterns, and harmful effects of er-
roneous hard labels for hard samples. SynQ addresses these
challenges by introducing a low-pass filter to reduce high-
frequency noise, aligning class activation maps to identify
correct image regions, and excluding cross-entropy loss for
hard samples to reduce ambiguity. SynQ is the first work to
explore both CNNs and ViTs, showing high adaptability to-
ward various models and dataset synthesis algorithms.

6.2 Noise-optimization-based Zero-shot PTQ
PTQ algorithms adjust the scaling factor s and zero-point z

or apply advanced quantization techniques instead of directly
updating model parameters. Compared to QAT, these meth-
ods require smaller synthetic datasets for calibration, typi-
cally evaluated with sets of 1,000 for CNNs and 32 for ViTs.

ZeroQ [Cai et al., 2020] pioneers zero-shot PTQ as the first
method of its kind. ZeroQ first generates a synthetic dataset
by optimizing a set of random noise with BNS loss and then
employs it to determine the clipping range [α, β]. This ap-
proach further extends to mixed-precision quantization by as-
signing bit precision configurations based on a Pareto fron-
tier. ZeroQ guides future researches toward enhancing syn-
thetic datasets while maintaining its sample-driven approach
for clipping range selection.

KW [Haroush et al., 2020] proposes generating class-
specific synthetic datasets by integrating BNS loss and IL. In
contrast to previous techniques which do not produce class-
specific data, this approach generates images corresponding
to each image class. IL aligns the classifier probabilities of

images with their pre-assigned labels, thereby injecting de-
sired class information into each image. Combining BNS loss
and IL achieves high performance in 4bit quantization, show-
ing only a 2-3%p accuracy drop compared to the original
model, making it a baseline loss for future studies.

DSG [Zhang et al., 2021] addresses the homogenization is-
sues in synthetic datasets limited by BNS at distribution and
sample levels. The authors report that feature distributions
in synthetic datasets overfit to BNS (distribution-level ho-
mogenization), and identical optimization objectives result in
excessive sample similarity (sample-level homogenization).
DSG improves data diversity by slack distribution alignment,
which relaxes BNS constraints, and layer-wise sample en-
hancement, which reinforces per-sample loss. DSG demon-
strates that addressing the homogenization caused by BNS
significantly reduces overfitting and boosts the diversity of
synthetic datasets.

MixMix [Li et al., 2021b] focuses on reducing biases at
feature and label levels in generated samples. The authors
observe that features are biased as they originate from a spe-
cific model, preventing direct application across different ar-
chitectures. Additionally, labels of generated samples are bi-
ased due to inexact inversion from low-dimensional to high-
dimensional data. MixMix introduces two mixing techniques:
feature mixing to construct a universal feature space across
models and data mixing to ensure accurate label representa-
tion by combining synthetic samples and labels. The results
indicate that synthetic datasets are inherently biased and suit-
able only for their respective pre-trained models.

PSAQ-ViT [Li et al., 2022] is the first ZSQ method tai-
lored for ViTs. CNN-based methods rely mainly on BNS
loss, making them unsuitable for ViTs with layer normal-
ization and self-attention modules. PSAQ-ViT optimizes the
Patch Similarity Entropy (PSE) loss, aiming to maximize the
diversity of cosine similarities between the outputs of self-
attention layers for two different input patches, thereby gen-
erating samples that reflect self-attention diversity. PSE loss
serves as the baseline loss in ViT-based ZSQ, similar to BNS
loss in CNN-based ZSQ.

Genie [Jeon et al., 2023b] integrates generator-based
methods with noise-optimization-based algorithms. Genie
first trains a generator to extract the common knowledge
of the input domain, then indirectly optimizes the synthetic
dataset by learning from the trained generator. They distill
the knowledge with swing convolution to avoid information
loss while maintaining computational efficiency. Genie fur-
ther adopts advanced PTQ techniques such as adaptive round-
ing [Nagel et al., 2020], block-wise reconstruction [Li et al.,
2021a], and random dropping [Wei et al., 2022], leading to
improved performance.

SADAG [Dung et al., 2024] proposes a sharpness-aware
generation method to enhance the generalization of the quan-
tized model. Optimizing the noise with sharpness-aware min-
imization reduces both loss value and sharpness, leading the
image to a flat local optimum. Therefore, SADAG creates
samples with less loss sharpness by applying gradient match-
ing. The authors find that optimizing for loss sharpness gen-
erates smoother images with reduced color variation while
maintaining semantics, leading to better performance.



SMI [Hu et al., 2024] generates only the essential parts
of an image to accelerate generation speed while main-
taining ZSQ performance. Existing methods rely on dense
model inversion to produce all pixels of a fixed-size im-
age, unnecessarily spending equal time on unimportant back-
grounds and often introducing label errors by generating ob-
jects from other classes. SMI addresses this issue by eval-
uating patch-level importance through ViT attention scores
and stopping optimization for irrelevant patches, resulting in
a sparse dataset. SMI achieves up to 3.79× faster image gen-
eration with 77% sparsity while achieving similar or up to
0.78%p higher accuracy in W4A8 quantization, highlighting
the effectiveness of sparse model inversion.

CLAMP-ViT [Ramachandran et al., 2024] adopts con-
trastive learning to integrate semantic information into the
synthetic dataset. The authors point out that patch similar-
ity in PSAQ-ViT assumes equal importance for all patches
without considering spatial sensitivity, failing to capture se-
mantically meaningful inter-patch relations. To overcome this
problem, CLAMP-ViT introduces a patch-level contrastive
learning framework designed to enhance the semantic qual-
ity of synthetic data tailored for ViT models. Furthermore,
CLAMP-ViT supports mixed-precision quantization through
layer-wise evolutionary search, which determines the optimal
bit-width and quantization parameters.

7 Further Research Directions
ZSQ is a rapidly growing field with substantial potential.

Although notable advances have been made in ZSQ, numer-
ous research directions remain open for future exploration.

• More principled analysis on synthetic datasets. As men-
tioned in Section 2.3, reducing the discrepancy between
real and synthetic datasets is one of the significant chal-
lenges for ZSQ methods. However, researchers often fo-
cus on individual features (e.g., intra-class heterogeneity,
amplitude distribution, etc.) instead of investigating the un-
derlying causes of their differences. Conducting a deeper
analysis of synthetic datasets might fundamentally enhance
ZSQ methods, going beyond mere patchwork solutions.

• Broader application to various tasks and domains.
While ZSQ encompasses a wide range of settings, most
research concentrates on the image domain, focusing pri-
marily on CNN and ViT models. Specifically, they set task
T mainly as image classification, with a few work on object
detection [Li et al., 2022; Shang et al., 2023] or semantic
segmentation [Nagel et al., 2019]. Extending ZSQ research
to various tasks such as language, multi-variate, or graph-
based ones is crucial for advancing the field [Kim et al.,
2021; Kim et al., 2025a].

• Theoretical exploration of ZSQ. A formal investigation
into the theoretical limits of zero-shot quantization per-
formance is essential for understanding its full potential.
This includes defining the upper bounds on model accu-
racy without access to real data, and exploring how quanti-
zation bit-widths affect performance degradation. Further-
more, identifying the mathematical principles underlying
ZSQ is crucial for developing more robust algorithms.

• Faster generation of synthetic datasets. Increasing the
size of synthetic datasets enhances the performance of
quantized models by providing more diverse training
data [Kim et al., 2025b]. However, existing algorithms re-
quire a significant amount of time, requiring 1 to 4 RTX
4090 GPU hours for generating 5,120 images with a reso-
lution of 224 × 224. Therefore, reducing the time required
for data generation is a vital topic for future exploration.

• Combining other model compression techniques. Cur-
rent ZSQ methods achieve competitive results in 4bit quan-
tization but struggle to retain performance in 3bit or lower-
bit quantization. Integrating quantization with other model
compression methods such as pruning, weight sharing, or
low-rank approximation might be a key to achieve higher
compression rate while maintaining accuracy.

• Evaluating practical impact on real-world scenarios.
The importance of ZSQ lies in its applications for han-
dling real-world scenarios with limited data. However, cur-
rent ZSQ methods present experimental results solely on
benchmark datasets and models. The lack of evaluation re-
stricts researchers from validating the practicality of pro-
posed methods, limiting the reliability of ZSQ approaches.
Hence, evaluating ZSQ methods under practical settings is
required to compare their real-world applicability.

• Diverse problem settings. Recent advancements in ZSQ
have led to the exploration of diverse problem settings be-
yond conventional scenarios. These include setups such as
few-instance quantization, where 1 to 10 real images are
available, or cases leveraging pre-trained diffusion mod-
els [Li et al., 2024b]. Extending ZSQ to real-time quan-
tization and edge-device deployments are vital future di-
rections in enhancing the practical utility.

8 Conclusion
In this paper, we perform an extensive survey of ZSQ. We

first present the preliminaries and formulate the problem with
its key challenges. Then, we review ZSQ algorithms with a
novel taxonomy and categorize them based on data genera-
tion approaches and training requirements. Specifically, we
detail the motivations, ideas, and findings of each paper com-
prehensively. Finally, we introduce promising research topics
on ZSQ, providing insights to resolve current constraints.
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