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ABSTRACT

How can we accurately quantize a pre-trained model without any data? Quantization
algorithms are widely used for deploying neural networks on resource-constrained
edge devices. Zero-shot Quantization (ZSQ) addresses the crucial and practical
scenario where training data are inaccessible for privacy or security reasons. How-
ever, three significant challenges hinder the performance of existing ZSQ methods:
1) noise in the synthetic dataset, 2) predictions based on off-target patterns, and
the 3) misguidance by erroneous hard labels. In this paper, we propose SYNQ
(Synthesis-aware Fine-tuning for Zero-shot Quantization), a carefully designed
ZSQ framework to overcome the limitations of existing methods. SYNQ minimizes
the noise from the generated samples by exploiting a low-pass filter. Then, SYNQ
trains the quantized model to improve accuracy by aligning its class activation
map with the pre-trained model. Furthermore, SYNQ mitigates misguidance from
the pre-trained model’s error by leveraging only soft labels for difficult samples.
Extensive experiments show that SYNQ provides the state-of-the-art accuracy, over
existing ZSQ methods.

1 INTRODUCTION

How can we accurately quantize a pre-trained model without any data? Despite the success of
deep neural networks in various domains, deploying them on resource-constrained edge devices
remains challenging due to the limited computing capabilities. Addressing this challenge involves
network compression (Cheng et al., 2018; Deng et al., 2020; Park et al., 2024b), where quantization
methods (Li et al., 2021; Piao et al., 2022; Gholami et al., 2022) represent the full-precision model
with low-bit numbers, achieving high compression rate and accelerated inference with minimal
performance degradation compared to other methods such as pruning (Wang et al., 2022; Park et al.,
2024a; He & Xiao, 2024), knowledge distillation (Kim et al., 2021; Tran et al., 2022; Cho & Kang,
2022; Jeon et al., 2023a; Xie et al., 2023), and low-rank approximation (Jang et al., 2023). Zero-shot
Quantization (ZSQ) (Nagel et al., 2019) further advances this field by permitting quantization without
any training data. The importance of this approach is evident in real-world contexts where the training
data are unavailable for privacy and security reasons (Sharma et al., 2021).

Among the various existing works (Yoo et al., 2019; Zhang et al., 2021; Guo et al., 2022), methods
that fine-tune the quantized model with the synthetic dataset exhibit outstanding performance (Liu
et al., 2021a; Zhong et al., 2022b; Fan et al., 2024). Specifically, recent methods generate synthetic
samples resembling the real sample distribution by leveraging key aspects from the pre-trained model,
such as batch-normalization statistics (Cai et al., 2020), latent embeddings (Choi et al., 2021), or
texture feature distribution (Chen et al., 2023). However, we observe that three major limitations still
hinder the performance when utilizing synthetic datasets (see Section 3).

• Noise in the synthetic dataset. Synthetic datasets have distinct high-frequency noise unlike real
images that concentrate on low frequencies (see Figures 1 and 5). This discrepancy results in
inefficient fine-tuning of quantized models, thereby directly reducing model performance.

• Predictions based on off-target patterns. Quantized model from existing methods rely on incorrect
image patterns for predictions (see Figure 2). Such off-target reliance limits the quantized model in
identifying key areas necessary for accurate classification.

∗Corresponding Author.
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Figure 1: Comparison between (a) real images in ImageNet dataset and (b) generated samples in the
synthetic dataset from TexQ (Chen et al., 2023). Each set displays samples labeled as timber wolf,
tobacco shop, aircraft carrier, and beaker. We present the average magnitude spectrum for a randomly
selected batch of 256 images from each dataset, highlighting their distinct differences.

(a) Input (b) ResNet-18 (c) TexQ (d) SYNQ (Ours)

Figure 2: Grad-CAM (Selvaraju et al., 2017) plot of the (a) input by the (b) pre-trained ResNet-18
model on ImageNet dataset, the (c) 3bit quantized model by TexQ, and the (d) 3bit quantized model
by SYNQ. While TexQ fails to capture the correct image region, SYNQ captures the region closely
matching the pre-trained model.

• Misguidance by erroneous hard labels. Hard labels of difficult samples are often incorrect in
synthetic dataset, leading to misguided fine-tuning and ultimately harming the model (see Figure 3).

We propose SYNQ (Synthesis-aware Fine-tuning for Zero-shot Quantization), an accurate ZSQ
fine-tuning method to overcome the limitations of the existing methods that fine-tune with synthetic
datasets. SYNQ clears noise from the generated samples within the synthetic dataset by applying
a low-pass filter. Then, SYNQ ensures that the quantized model predicts from the correct image
region by optimizing the class activation map (CAM) alignment loss to distill object localization
knowledge. Furthermore, SYNQ mitigates misguidance from errors of the pre-trained model by
using only soft labels for difficult samples. Experimental results show that SYNQ achieves the
state-of-the-art performance, improving the image classification accuracy of the quantized model
up to 1.74%p compared to existing methods (see Table 1). SYNQ is both powerful and versatile,
seamlessly integrating into any ZSQ methods that fine-tune with synthetic datasets, regardless of
model type, quantization bits, or dataset (see Sections 5.2, 5.3, Appendices C.6, and C.7).

Our contributions are summarized as follows:

• Observation. Our observations clearly outline three significant challenges faced by existing ZSQ
methods utilizing synthetic datasets: 1) noise in synthetic datasets, 2) predictions based on off-target
patterns, and 3) misguidance by erroneous hard labels (see Figures 1, 2, 3, and 5).

• Algorithm. We propose SYNQ, an accurate ZSQ method to overcome the limitations of fine-
tuning with synthetic datasets. SYNQ exploits a low-pass filter to minimize noise, aligns the class
activation map to ensure prediction from the correct image region, and leverages soft labels for
difficult samples to prevent misguidance from erroneous hard labels (see Section 4).

• Experiments. We experimentally show that SYNQ consistently outperforms existing ZSQ methods
on various models and datasets, achieving classification accuracy improvement of up to 1.74%p
(see Section 5 and Appendix C).

Reproducibility. All of our implementation and datasets are available at https://github.com/
snudm-starlab/SynQ.
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2 PRELIMINARIES AND PROBLEM DEFINITION

We introduce the ZSQ (Zero-shot Quantization) problem and describe the preliminaries. Appendix A
contains the detailed descriptions of frequently used notations in this paper.

2.1 ZERO-SHOT QUANTIZATION

In this work, we follow the typical two-step scheme (Choi et al., 2021; Li et al., 2023a) to quantize a
pretrained model. First, we generate the synthetic dataset that resembles the original dataset using the
pre-trained model. Second, we fine-tune the quantized model with generated samples.

The goal of the first step is to produce synthetic dataset {xi}Ni=1 of length N with corresponding
labels {yi}Ni=1, using the pre-trained model with parameters θ. We utilize noise optimization (Cai
et al., 2020; Zhong et al., 2022b), where we initialize the synthetic dataset and labels as random
Gaussian noises and randomly assigned classes, respectively; we then iteratively update the synthetic
dataset {xi}Ni=1. Specifically, we minimize Batch Normalization Statistics (BNS) loss LBNS and
Inception Loss (IL) LIL in Equation (1), with hyperparameter α balancing them.

min
{xi}N

i=1

LIL + αLBNS , where LIL =
1

N

N∑
i=1

CE (q(xi; θ),yi),

LBNS =
1

L

L∑
l=1

∥∥µl(θ)− µl(θ, {xi}Ni=1)
∥∥2
2
+
∥∥σl(θ)− σl(θ, {xi}Ni=1)

∥∥2
2
,

(1)

where the lth batch normalization (BN) layer of the pre-trained model with parameters θ (out of
L BN layers) stores the running mean µl(θ) and standard deviation σl(θ) of the training dataset.
The mean µl(θ, {xi}Ni=1) and standard deviation σl(θ, {xi}Ni=1) are calculated on {xi}Ni=1 using θ.
q(·; θ) denotes the probability distribution by parameters θ and CE(·, ·) stands for cross-entropy loss.

The goal of the second step is to obtain the quantized model with parameters θq , using the pre-trained
model with parameters θ and synthetic dataset {xi}Ni=1 with labels {yi}Ni=1. We first quantize the
pre-trained model with Rounding-To-Nearest (RTN) (Gupta et al., 2015), then fine-tune the quantized
model with parameters θq with the synthetic dataset from the previous step. For strong performance,
we train the quantized model by minimizing two losses, cross-entropy loss CE(·, ·) with hard label
yi and KL divergence loss KL(·||·) which transfers knowledge from the pre-trained model. Note
that we directly update the quantized model, while inferencing with its dequantized parameters.
Equation (2) incorporates the two loss functions with balancing hyperparameter λCE .

min
θq
LZSQ = min

θq

1

N

N∑
i=1

KL
(
q(xi; θ)||q(xi; θ

q)
)
+ λCECE

(
q(xi; θ

q),yi

)
. (2)

2.2 DIFFICULTY OF AN IMAGE

Difficulty of an image represents how easily the model θ can misclassify the image xi. Among
various methods (Ribeiro et al., 2016; Lin et al., 2017; Kishida & Nakayama, 2019; Scheidegger
et al., 2021) to evaluate the difficulty of the model in correctly classifying an image, we follow the
probability-based approach (Li et al., 2019) which is used in previous ZSQ methods (Li et al., 2023a).
The difficulty δ(xi, θ) is determined by how low the model’s predicted probability is for the correct
label as described in Equation (3).

δ(xi, θ) = 1− qyi
(xi; θ), (3)

where qyi
(xi; θ) is the probability of label yi predicted by the model with parameters θ. This

definition employs the true label to specifically highlight the model’s ambiguity toward the image.
Models display an error rate of 0 for difficulties below 0.5 and an increasing error rate for higher
difficulties as shown in Figure 3, indicating either incorrectness or uncertainty in model predictions.
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2.3 PROBLEM DEFINITION

Given a pre-trained image classification model and quantization bits, Zero-shot Quantization (ZSQ)
targets to optimize the quantized model to maintain performance without any real images. We give
the formal definition as in Problem 1.
Problem 1 (Zero-shot Quantization). We have a pre-trained model with parameters θ and quan-
tization bits B. Zero-shot quantization is to optimize the quantized model with parameters θq for
maximum accuracy within the Bbit limit without the use of real data.

3 OBSERVATION

We present the observations that highlight the three major challenges posed to existing methods.

Noise in the synthetic dataset. The synthetic dataset is noisy, as it is produced by noise optimization
that starts with a Gaussian noise. In Figure 1, we compare (a) real images from the ImageNet dataset
with (b) generated samples from the synthetic dataset following TexQ (Chen et al., 2023). Generated
samples display distinct grainy noise that leads to an evenly distributed frequency magnitude spectrum,
in contrast to the real images whose magnitude is primarily concentrated in the low-frequency area.
Note that we investigate the frequency magnitude spectrum by applying Fourier transform (Cooley &
Tukey, 1965; Park et al., 2021; 2024c) on images. Moreover, Figure 5 shows the severe differences in
amplitude distributions between (a) real images and (b) generated samples (refer to Appendix C.3 for
results on other baselines and datasets). This frequency domain discrepancy challenges the quantized
model to restore classification performance during fine-tuning.

Difficulty

E
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o
r 

R
at

e

Figure 3: Error rates of pre-trained
ResNet-20 on CIFAR-10 (yel-
low) and CIFAR-100 (green), and
ResNet-18 on ImageNet (purple)
by difficulty. Error rate rapidly
grows as the difficulty exceeds 0.5.

Predictions based on off-target patterns. Fine-tuning with a
synthetic dataset leads the quantized model to rely on incorrect
image patterns for predictions. Figure 2 shows the discriminative
regions that Grad-CAM (Selvaraju et al., 2017) identifies for the
ground-truth class across three models: (a) pre-trained ResNet-
18 model on the ImageNet dataset, (b) 3bit quantized model by
TexQ (Chen et al., 2023), and (c) 3bit quantized model by our
SYNQ. Note that TexQ predicts based on wrong regions, unlike
the pre-trained model which accurately captures critical regions
(refer to Appendix C.4 for further analysis). This mismatch
definitely harms the quantization performance.
Misguidance by erroneous hard labels. Reliance on erro-
neous hard labels in the synthetic dataset leads to misguided
fine-tuning outcomes. Figure 3 shows the growing error rates
for pre-trained ResNet (He et al., 2016) models on CIFAR-10,
CIFAR-100, and ImageNet datasets as image difficulty increases.
Difficulty of an image is defined as Equation (3), detailed in
Section 2.2. Consequently, the pre-trained model often mislabels
samples with a difficulty level over 0.5. These erroneous hard
labels of difficult samples damage quantization performance.

4 PROPOSED METHOD

4.1 OVERVIEW

We propose SYNQ (Synthesis-aware Fine-tuning for Zero-shot Quantization), an accurate Zero-shot
Quantization (ZSQ) method addressing the following three major challenges of existing methods that
fine-tune with the synthetic dataset. These are the three main challenges that must be tackled:

C1. Noise in the synthetic dataset. Previous methods fine-tune the quantized model with a noisy
synthetic dataset, which exhibits a distribution discrepancy of frequency domain compared to
real images. How can we minimize the effect of the noise within the generated samples?

C2. Prediction based on off-target patterns. The quantized model predicts based on incorrect
image regions that are unlike those observed in the pre-trained model. How can we optimize the
quantized model to more accurately utilize on-target patterns?

C3. Misguidance from erroneous hard labels. Despite the high error rate of difficult samples,
existing works trust erroneous hard labels. How can we address the misguidance by hard labels?
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Figure 4: Overall architecture of SYNQ. Our main ideas are 1) low-pass filter, 2) alignment of class
activation map, and 3) soft labels for difficult samples. See Section 4 for details.

We address these challenges with the following main ideas:

I1. Low-pass filter (Section 4.2). We directly reduce the noise from the dataset by exploiting a
Gaussian low-pass filter in the frequency domain.

I2. Alignment of class activation map (Section 4.3). We align the class activation map between
the pre-trained and quantized models, directly distilling knowledge to identify the correct image
region from the pre-trained model to the quantized model.

I3. Soft labels for difficult samples (Section 4.4). For difficult samples, we fine-tune only with soft
labels or predictions from the pre-trained model to reduce ambiguity.

Figure 4 illustrates the overall process of SYNQ. SYNQ first generates a synthetic dataset from
arbitrary labels. Then, SYNQ exploits a Gaussian low-pass filter to refine the samples by removing
noise. With this filtered dataset, SYNQ fine-tunes the quantized model with KL divergence and
cross-entropy losses, following the standard ZSQ framework. SYNQ also optimizes CAM alignment
loss LCAM to enhance activation map alignment for better critical region detection. SYNQ exploits
the threshold τ to decide on the application of cross-entropy loss based on the difficulty of a sample.

4.2 LOW-PASS FILTER

The first step of Zero-shot Quantization (ZSQ) is to produce the synthetic dataset which effectively
mimics the real dataset. Existing methods leverage the prediction and batch normalization statistics
of the pre-trained model to generate samples. However, their limitation is the noise in the synthetic
dataset, as discussed in Figure 1. We investigate the intensity of this noise, by performing the Fourier
transform on the datasets. Figure 5 illustrates the amplitude distribution of (a) ImageNet dataset, (b)
the synthetic dataset by TexQ (Chen et al., 2023), and (c) Gaussian-filtered samples based on the
distance from the center. The dark solid line indicates the mean distribution, and the surrounding
colored region shows the standard deviation within a batch of 256 randomly chosen images. While
the ImageNet dataset primarily exhibits lower frequency components, the synthetic dataset contains
more high-frequency components, clearly indicating a higher level of sharpness and noise. This noise
is observed in various ZSQ methods, regardless of the setting (see Appendix C.3).

To mitigate this noise, we exploit a Gaussian low-pass filter on the generated samples. Given a sample
xi with width W , height H , and filtering hyperparameter D0 which is related to cut-off frequency,
we compute the filtered sample xF

i as shown in Equation (4).

xF
i = F−1 (G⊙F(xi)) ,Guv = exp (− (D(u, v))2

2D2
0

), D(u, v) =

√
(u− W

2
)2 + (v − H

2
)2, (4)

where D(u, v) denotes the distance from the coordinate (u, v) to the center in the frequency domain
and ⊙ is an element-wise multiplication. This Gaussian low-pass filter G works in the frequency
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Figure 5: Comparison of amplitude distribution among (a) ImageNet dataset, (b) synthetic dataset by
TexQ, and (c) filtered samples. After filtering, the distribution closely aligns with that of real images.

domain from conducting Fourier transform F , we then apply inverse Fourier transform F−1 to obtain
the filtered sample xF

i . Figure 5(c) clearly shows the positive effect of the filter: removal of noise in
the high-frequency region resulting in an amplitude distribution aligning with that of real images. We
further investigate the robustness of low-pass filter towards different types of noise in Appendix C.8.

4.3 ALIGNMENT OF CLASS ACTIVATION MAP

The next step is to fine-tune the quantized model to achieve high accuracy. The first challenge of this
step is to ensure that the quantized model makes predictions using on-target image patterns. Existing
methods fine-tune the model with classification and knowledge distillation from the pre-trained
model, using the synthetic dataset. However, the quantized model from these methods fail to properly
localize the object as depicted in Figure 2. To ensure the quantized model to make prediction based on
correct image regions, we directly align the class activation map between pre-trained and quantized
models. We optimize the class activation map (CAM) alignment loss LCAM by minimizing the mean
square error between the saliency maps Sθ(xi) and Sθq

(xi) of the pre-trained and quantized models,
respectively. Among various techniques (Zhou et al., 2016; Selvaraju et al., 2017; Zagoruyko &
Komodakis, 2017; Chattopadhay et al., 2018) to highlight the important region of the image, we
select Grad-CAM (Selvaraju et al., 2017) due to its simplicity and superiority, which we discuss
further in Section 5.4. Grad-CAM generates the saliency map Sθ(xi) by weighting the activations
with their gradients, emphasizing the regions in the input image that have the greatest impact on the
model’s prediction. We formulate CAM alignment loss as Equation (5).

LCAM (xi; θ, θ
q) = ∥Sθ(xi)− Sθq

(xi)∥2F ,

Sθ(xi) = ReLU

(∑
k

(
1

WkHk

Wk∑
w=1

Hk∑
h=1

∂yyi

∂Ak;θ
wh(xi)

)
Ak;θ(xi)

)
,

(5)

where Ak;θ(xi) denotes the activations of the last layer at channel k with Wk and Hk representing its
width and height, respectively. The gradient of the predicted score yyi for the true class yi with respect
to the activation Ak;θ

wh(xi) at spatial location (w, h) indicates the contribution of each activation to
the model’s prediction. Figure 2 clearly shows that LCAM enables SYNQ to accurately target the
correct image regions as the pre-trained model does (see Appendix C.4 for further analysis).

4.4 SOFT LABELS FOR DIFFICULT SAMPLES

The second challenge of the fine-tuning step is the misguidance from possibly mislabeled samples.
Existing works assign random classes as labels for generated samples, then minimize the Inception
Loss (IL)LIL in Equation (1) to optimize the image so that the pre-trained model predicts the assigned
labels. However, the pre-trained model frequently mislabels difficult samples in this approach, as
the higher difficulty indicates that the pre-trained model assigns lower probabilities to the true label,
following the definition in Equation (3).

To avoid this misguidance, we exclude the cross-entropy loss with the hard labels for difficult samples.
We classify samples as easy or difficult based on a difficulty threshold τ . For easy samples, we opti-
mize both the cross-entropy loss with hard labels and the KL divergence with soft labels. In contrast,
for difficult samples, we exclusively optimize the KL divergence with soft labels, completely omitting
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the cross-entropy loss. This approach focuses on replicating the pre-trained model’s responses to
ambiguous images, minimizing performance degradation caused by overconfidence in hard labels.
Note that previous methods apply both soft and hard labels irrespective of sample difficulty.

4.5 OBJECTIVE FUNCTION

Combining all three ideas of SYNQ, we modify the loss function for the fine-tuning phase from
LZSQ in Equation (2) to LSYNQ in Equation (6).

LSYNQ =
1

N

N∑
i=1

(
KL

(
q(x

F
i ; θ)||q(xF

i ; θ
q
)
)
+1{δ(xF

i
,θ)≤τ}λCECE

(
q(x

F
i ; θ

q
),yi

)
+λCAMLCAM

(
x
F
i ; θ, θ

q))
, (6)

where λCE and λCAM are balancing hyperparameters for cross-entropy loss and CAM alignment
loss, respectively. 1{·} is the indicator function which returns 1 if the inner statement is true and 0
otherwise. We train with the filtered samples xF

i (Section 4.2) to remove the noise in the synthetic
dataset. Then, we align the class activation map between the pre-trained and quantized models by
optimizing LCAM (Section 4.3) to transfer the knowledge of finding an object on the image. We
also exclude cross-entropy loss for difficult samples with a threshold τ (Section 4.4) to mitigate the
impact of misguidance from hard labels.

SYNQ is compatible with any ZSQ method utilizing synthetic datasets (Zhong et al., 2022b; Qian
et al., 2023b; Jeon et al., 2023b). We adopt calibration center synthesis (Chen et al., 2023), difficult
sample generation, and sample difficulty promotion (Li et al., 2023a) because we observe they
generally perform better in ZSQ (refer to Appendix D for details). We visualize the generated
images within synthetic dataset in Figure 12. The adaptability of SYNQ is clearly demonstrated
through further experiments on other Zero-shot QAT and PTQ methods in Appendices C.6 and C.7,
respectively. We formulate the overall algorithm of SYNQ in Algorithm 1.

Complexity Analysis. We analyze the time complexity of SYNQ, where N and L represent the
numbers of training samples and layers, respectively.

Theorem 1 (Time Complexity of SYNQ). Given a model with an inference complexity of O(Tθ), the
time complexity for the quantization procedure (Algorithm 1) of SYNQ is O

(
NLTθ

)
.

Proof. See Appendix C.1.

Theorem 1 demonstrates that SYNQ is an efficient approach, with a time complexity scaling linearly
with the number of training samples N and model layers L. Furthermore, SYNQ generates only 5,120
samples, making it significantly faster than generator-based methods such as AdaSG (Qian et al.,
2023b) and AdaDFQ (Qian et al., 2023a), which produce over 1 million samples (see Appendix C.9 for
experiments with different sizes of dataset). We perform a runtime analysis of SYNQ in Appendix C.2
to analyze the computational overhead of SYNQ.

5 EXPERIMENTS

We perform experiments to answer the following questions about SYNQ. Further discussions and
experiments on SYNQ are discussed in Appendix C.

Q1. Accuracy in Convolutional Neural Network (CNN) Quantization (Section 5.2). How accurate
is the quantized CNN model from SYNQ compared to those from existing ZSQ methods?

Q2. Accuracy in Vision Transformer (ViT) Quantization (Section 5.3). How effective is SYNQ
in enhancing ViT Quantization performance?

Q3. Analysis on Class Activation Map Techniques (Section 5.4). Which CAM technique demon-
strates the highest performance?

Q4. Ablation Study (Section 5.5). Are all components of SYNQ effective for enhancing the classifi-
cation accuracy of the quantized model?

Q5. Hyperparameter Analysis (Section 5.6). How robust are the performance gains by SYNQ in
hyperparameters λCE , λCAM , D0, and τ?

5.1 EXPERIMENTAL SETUP

We briefly introduce the experimental setup. Further setups are detailed in Appendix D.
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Table 1: Zero-shot Quantization accuracy [%] of ResNet-20 (R-20) on CIFAR-10 and CIFAR-100,
and ResNet-18 (R-20), ResNet-50 (R-50), and MobileNetV2 (MV2) on ImageNet. WBAB indicates
that both weights and activations are quantized to Bbit. Note that SYNQ achieves the highest accuracy.

Method
R-20 (CIFAR-10) R-20 (CIFAR-100) R-18 (ImageNet) R-50 (ImageNet) MV2 (ImageNet)

W4A4 W3A3 W4A4 W3A3 W4A4 W3A3 W4A4 W3A3 W4A4 W3A3

Full Precision (W32A32) 93.89 70.33 71.47 77.73 73.03

GDFQ (Xu et al., 2020) 90.11 75.11 63.75 47.61 60.60 20.23 54.16 0.31 59.43 1.46

ARC (Zhu et al., 2021) 88.55 - 62.76 40.15 61.32 23.37 64.37 1.63 60.13 14.30

Qimera (Choi et al., 2021) 91.26 74.43 65.10 46.13 63.84 1.17 66.25 - 61.62 -

ARC + AIT (Choi et al., 2022) 90.49 - 61.05 41.34 65.73 - 68.27 - 66.47 -

IntraQ (Zhong et al., 2022b) 91.49 77.07 64.98 48.25 66.47 45.51 - - 65.10 -

AdaSG (Qian et al., 2023b) 92.10 84.14 66.42 52.76 66.50 37.04 68.58 16.98 65.15 26.90

AdaDFQ (Qian et al., 2023a) 92.31 84.89 66.81 52.74 66.53 38.10 68.38 17.63 65.41 28.99

HAST (Li et al., 2023a) 92.36 86.34 66.68 55.67 66.91 42.58 - - 65.60 -

TexQ (Chen et al., 2023) 92.68 86.47 67.18 55.87 67.73 50.28 70.72 25.27 67.07 32.80

PLF (Fan et al., 2024) 92.47 88.04 66.94 57.03 67.02 - 68.97 - - -

SYNQ (Proposed) 92.76 88.11 67.34 57.28 67.90 52.02 71.05 26.89 67.27 34.21
Standard Deviation ± 0.10 ± 0.15 ± 0.15 ± 0.29 ± 0.19 ± 0.34 ± 0.17 ± 0.24 ± 0.21 ± 0.27

Setup. We evaluate our method across three datasets by reporting the top-1 accuracy for the validation
sets of CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (ILSVRC 2012) (Deng et al.,
2009) datasets. We select ResNet-20 (He et al., 2016) model for CIFAR-10 and CIFAR-100, and
ResNet-18, ResNet-50 (He et al., 2016), and MobileNetV2 (Sandler et al., 2018) model for ImageNet.
We follow this prevalent experimental setup from existing works (Chen et al., 2023; Qian et al.,
2023a;b) to correctly compare the performance of SYNQ.

Competitors. We compare SYNQ with existing ZSQ methods utilizing synthetic dataset, including
GDFQ (Xu et al., 2020), ARC (Zhu et al., 2021), Qimera (Choi et al., 2021), ARC + AIT (Choi
et al., 2022), IntraQ (Zhong et al., 2022b), AdaSG (Qian et al., 2023b), AdaDFQ (Qian et al., 2023a),
HAST (Li et al., 2023a), TexQ (Chen et al., 2023), and PLF (Fan et al., 2024). Both model weights
and activation are quantized identically for all layers.

Implementation Details. We follow the settings from IntraQ (Zhong et al., 2022b) and HAST (Li
et al., 2023a) for equal comparison. We generate 5,120 images with a batch size of 256. The batch
size for fine-tuning is 256 for CIFAR-10/100 and 16 for ImageNet with epochs uniformly set to 100.
We search τ , D0, λCE , and λCAM within the ranges {0.5, 0.55, 0.6, 0.65, 0.7}, {20, 40, 60, 80, 100},
{0.005, 0.05, 0.5, 5}, and {20, 50, 100, 200, 300, 500, 2000}, respectively. All of our experiments
were done at a workstation with Intel Xeon Silver 4214 and RTX 3090.

5.2 ACCURACY IN CNN QUANTIZATION (Q1)

We evaluate the quantization accuracy of SYNQ against existing ZSQ methods using CIFAR-10,
CIFAR-100, and ImageNet datasets. Our method significantly enhances quantized model accuracy
on all settings with 3bit and 4bit quantization as summarized in Table 1. We report the mean and
standard deviation of 5 iterations, each using different random seed values. We have two observations
from the result. First, SYNQ benefits the fine-tuning of quantized models consistently across diverse
quantization bits, models, and datasets. Compared to state-of-the-art methods TexQ (Chen et al.,
2023) and PLF (Fan et al., 2024), SYNQ achieves higher accuracies of up to 1.74%p (ResNet-18
on ImageNet dataset). Second, SYNQ demonstrates increasing effectiveness as bit-width decreases.
Considering that lower-bit quantization is inherently more challenging, our results clearly showcase
the robustness of SYNQ due to its effective fine-tuning that overcomes the aforementioned limitations.

5.3 ACCURACY IN VIT QUANTIZATION (Q2)

We investigate the effectiveness of SYNQ in enhancing ZSQ performance for Vision Transformers
(ViTs). Table 2 shows the ZSQ precision of four ViT models, DeiT-Tiny, DeiT-Small (Touvron
et al., 2021), Swin-Tiny, and Swin-Small (Liu et al., 2021b) pre-trained on ImageNet dataset. SYNQ
enhances the quantization precision across various models, achieving up to 0.58%p increase in
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Table 2: Zero-shot Quantization accuracy [%] of ViT models on ImageNet dataset. WBAB indicates
that both weights and activations are quantized to Bbit. Note that SYNQ shows consistent improve-
ments in quantization performance across various models.

Bits Method DeiT-Tiny DeiT-Small Swin-Tiny Swin-Small Average

Full Precision 72.21 79.85 81.35 83.20 79.15

W4A8
PSAQ-ViT (Li et al., 2022) 65.57 ± 0.10 72.04 ± 0.19 69.78 ± 1.67 75.03 ± 0.63 70.61
SYNQ (Proposed) 65.90 ± 0.07 72.28 ± 0.34 70.76 ± 1.61 75.82 ± 0.54 71.19

W8A8
PSAQ-ViT (Li et al., 2022) 71.56 ± 0.03 75.97 ± 0.20 73.54 ± 1.61 76.68 ± 0.53 74.44
SYNQ (Proposed) 71.74 ± 0.03 76.16 ± 0.29 74.11 ± 1.82 77.32 ± 0.59 74.83

average precision when applied to the recent method PSAQ-ViT (Li et al., 2022). The results show
that SYNQ is an accurate ZSQ method not only tailored for CNN but also is effective in ViTs.

5.4 ANALYSIS ON CLASS ACTIVATION MAP TECHNIQUES (Q3)

CAM GC* GC*++
*GC: Grad-CAM

Figure 6: ZSQ accuracy
comparison on different
CAM techniques. See
Section 5.3 for details.

We compare the quantization accuracy of SYNQ when utilizing different
techniques to output the class activation map. We show the 3bit quantization
accuracy of ResNet-18 model in Figure 6. Grad-CAM (Selvaraju et al.,
2017) demonstrates higher performance over CAM (Zhou et al., 2016)
and Grad-CAM++ (Chattopadhay et al., 2018). This is attributed to Grad-
CAM++ being specialized in localizing multiple objects, whereas Grad-
CAM focuses on a single object. Additionally, note that Grad-CAM also
takes advantage over CAM in that it is a direct generalization of CAM
which is applicable only to models with a global pooling layer. Thus, we
utilize Grad-CAM to generate the saliency map for the CAM alignment
loss LCAM , as described in Section 4.4.

5.5 ABLATION STUDY (Q4) Table 3: Ablation study on
the main ideas of SYNQ. All
ideas contribute to the im-
proved performance.

I1 I2 I3 Accuracy [%]

Baseline 43.63

✓ 49.43
✓ 48.26

✓ 46.42
✓ ✓ 51.24
✓ ✓ 50.81

✓ ✓ 50.06
✓ ✓ ✓ 52.02

We perform an ablation study to show that each main idea of SYNQ,
such as low-pass filter (I1) in Section 4.2, alignment of class activation
map (I2) in Section 4.3, and soft labels for difficult samples (I3) in
Section 4.4, improves the classification accuracy of the compressed
model. We summarize the 3bit quantization results of ResNet-18
model on ImageNet dataset in Table 3. Note that the baseline denotes
HAST (Li et al., 2023a) with layer-wise batch normalization loss from
TexQ (Chen et al., 2023) as detailed in Appendix D. Our analysis
shows that all proposed ideas contribute to improved performance,
with low-pass filter (I1) having the strongest impact of 5.80%p.

5.6 HYPERPARAMETER ANALYSIS (Q5)

We analyze the robustness of SYNQ concerning the newly introduced hyperparameters λCE , λCAM ,
D0, and τ in Figure 7. We report the 3bit quantization accuracy for the ResNet-18 model trained
on the ImageNet dataset. We have three observations from the result. First, as shown in Figure 7(a),
the classification accuracy remains robust across a range of λCE and λCAM values. This robustness
indicates that SYNQ remains effective even when these hyperparameters are not precisely tuned.
Second, Figure 7(b) illustrates the effect of varying the difficulty threshold τ . Note that the classifica-
tion accuracy increases as τ increases from 0 to 0.5, since too low τ excludes many useful samples
for cross-entropy training. However, the classification accuracy starts to decrease as τ becomes
greater than 0.5, since it allows to use difficult and ambiguous samples for cross-entropy training.
We observe that the τ value of 0.5 gives the best trade-off between using more samples and not
using ambiguous samples. We further conduct a deeper analysis on τ in Appendix C.11, verifying its
impact on different settings. Third, Figure 7(c) shows that an appropriate balance in D0 is necessary
to maintain performance. Extremely low D0 values result in significant performance degradation due
to excessive filtering, which oversmooths the images and results in the loss of crucial information.
Overall, SYNQ consistently outperforms baselines across a diverse range of hyperparameter values.
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Figure 7: Hyperparameter analysis on (a) balancing hyperparameters λCE and λCAM , (b) difficulty
threshold τ , and (c) filtering hyperparameter D0. See Section 5.5 for details.

6 RELATED WORK

Network Quantization. Network quantization reduces the computational complexity and memory
footprint of deep neural networks by converting the weights, activations, or both from full precision
to lower precision formats (Deng et al., 2020; Ada; Guo et al., 2022; Shang et al., 2023; Park et al.,
2024b). Quantization significantly speeds up inference and reduces power consumption, enabling
deployment on edge devices with limited resources. Recent advancements in network quantization
include Quantization-Aware Training (QAT) (Jacob et al., 2018; Lee et al., 2022; Dettmers et al.,
2023; Xu et al., 2024) and Post-Training Quantization (PTQ) (Li et al., 2021; Frantar et al., 2023;
Zhong et al., 2022a; Jeon et al., 2022). QAT integrates quantization into training, enabling the model
to learn weights robust to quantization noise, thereby maintaining higher accuracy. On the other
hand, PTQ quantizes pre-trained models using calibration to minimize accuracy loss without original
training data. Furthermore, advanced strategies such as mixed-precision quantization (Koryakovskiy
et al., 2023), knowledge distillation (Boo et al., 2021), adaptive quantization (Zhou et al., 2018),
weight sharing (Ullrich et al., 2016), parameter reparameterization (Li et al., 2023c) and hardware-
awareness (Wang et al., 2019) have shown promising results in achieving a balance between model
efficiency and performance. However, existing works require real data to directly train or calibrate the
quantized model. In contrast, SYNQ focuses on QAT scenarios where there is no access to real data.

Zero-shot Quantization. Zero-shot Quantization (ZSQ) (Cai et al., 2020), also called as data-free
quantization (Nagel et al., 2019; Chen et al., 2019; Choi et al., 2020), performs quantization without
the need for accessing the training data of full-precision models. Earlier methods focused on calibrat-
ing model parameters solely based on model properties without acquiring any data (Banner et al.,
2019; Guo et al., 2022). Unfortunately, these methods resulted in significant performance drops at
lower bit widths such as 3bit or 4bit quantization (Xu et al., 2020; Zhong et al., 2022b). Recent studies
generate synthetic datasets and fine-tune the quantized model to enhance performance (Haroush et al.,
2020; Choi et al., 2021; Liu et al., 2021a; Zhong et al., 2022b). GDFQ (Xu et al., 2020) first employs
generative methods leveraging batch normalization statistics and extra category label information.
Numerous variants have developed the field by introducing techniques such as advanced genera-
tors (Zhu et al., 2021), boundary supporting samples (Choi et al., 2021), noise optimization (Cai
et al., 2020), diversified samples (Zhang et al., 2021), intra-class heterogeneity (Cai et al., 2020), hard
sample generation (Li et al., 2023a), texture feature calibration (Chen et al., 2023), and pseudo-label
filtering (Fan et al., 2024). Recently, several works further advances ZSQ into Vision Transformers (Li
et al., 2022; 2023b; Ramachandran et al., 2024). However, existing methods continue to struggle with
the three primary challenges (see Section 4.1). In contrast, SYNQ tackles these challenges with three
main ideas: low-pass filter, class activation map alignment, and soft labels for difficult samples.

7 CONCLUSION

We propose SYNQ (Synthesis-aware Fine-tuning for Zero-shot Quantization), an accurate Zero-shot
Quantization (ZSQ) method that effectively addresses the three major limitations of fine-tuning with
synthetic datasets: 1) noise in the synthetic dataset, 2) predictions based on off-target patterns, and
the 3) misguidance by erroneous hard labels. We exploit a low-pass filter to minimize noise, align
the class activation map to ensure prediction from correct image region, and leverage soft labels on
difficult samples to avoid misguidance by erroneous hard labels. SYNQ consistently outperforms
existing ZSQ methods across diverse models, quantization bits, and datasets. Future works include
extending our method into settings such as object detection and diffusion models.
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A NOTATION

We summarize the frequently used notations in the paper as Table 4.

Table 4: Frequently used notations.

Symbol Description
θ A pre-trained model
θq The quantized model

{xi}Ni=1 Synthetic samples
{yi}Ni=1 One-hot encoded labels of synthetic samples
q(xi; θ) Probability distribution of a sample xi predicted by parameters θ
δ(xi; θ) Difficulty of a sample xi predicted by parameters θ
KL(·||·) KL divergence loss
CE(·, ·) Cross-entropy loss

F Fourier transform function
G Gaussian low-pass filter
D0 Filtering hyperparameter

λCAM Balancing hyperparameter of CAM loss
λCE Balancing hyperparameter of CE loss
τ Threshold of difficulty for cross-entropy loss

B ALGORITHM

We describe the quantization procedure of SYNQ in Algorithm 1. Note that any technique for
generating synthetic datasets is applicable.

Algorithm 1 Quantization procedure of SYNQ

Input: the pre-trained model with parameters θ, hyperparameters nep, D0, λCAM , λCE , and τ .
Output: the parameters θq of the quantized model.

/** Step 1: Generate synthetic dataset **/
1: Initialize the synthetic dataset {xi}Ni=1 with Gaussian noise.
2: Randomly assign labels {yi}Ni=1 for synthetic dataset.
3: Optimize {xi}Ni=1 to minimize LIL + αLBNS . ▷ Compatible with any synthetic dataset

/** Step 2: Fine-tune quantized model **/
4: Initialize θq following the round-to-nearest scheme.
5: Apply a low-pass Gaussian filter with a cut-off frequency D0

to synthetic samples and obtain {xF
i }Ni=1. ▷ Idea 1: Low-pass filter

6: for each epoch in [1, . . . , nep] do
7: Initialize the total loss L to zero.
8: for i in [1, . . . , N ] do
9: Perform forward pass of θ and θq with synthetic sample xF

i .
10: Compare gradients and calculate the CAM loss LCAM . ▷ Idea 2: CAM alignment
11: L ← L+KL(q(xi; θ)||q(xi; θ

q)) + λCAMLCAM

12: Calculate δ(xi; θ)
13: if δ(xi; θ) ≤ τ then ▷ Idea 3: Soft labels for difficult samples
14: L ← L+ λCECE(q(xi; θ

q),yi)
15: end if
16: end for
17: Update θq to minimize L.
18: end for
19: return θq
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C FURTHER DISCUSSION AND EXPERIMENTS

C.1 PROOF OF THEOREM 1

We provide the proof of Theorem 1 as below:

Proof. We investigate the time complexity of SYNQ in three steps: synthetic dataset generation, low-
pass filter application, and quantized model fine-tuning. First, synthetic dataset generation involves
calculating Inception Loss LIL and Batch Normalization Statistics Loss LBNS for N samples, each
requiring a forward pass through the model, resulting in complexity of O(NTθ).

Second, applying the low-pass filter G involves a Fourier transform F(·), an element-wise multipli-
cation ⊙, and an inverse Fourier transform F−1(·) (see Equation 4). Implementing with Fast Fourier
Transform(FFT), the time complexity for a single input x with size of Z × Z is O(Z logZ), O(Z),
and O(Z logZ)) is for F(x), G⊙F(x), and F(G⊙F(x)), respectively (Cooley & Tukey, 1965).
Therefore, the time complexity of this step is O(NZ logZ) for N samples.

Lastly, the fine-tuning step involves calculating the loss for N filtered samples, resulting in complexity
of O(N(Tθ + L · Tθ)). Here, Tθ represents the complexity of computing the cross-entropy and
KL divergence losses, and L · Tθ represents the complexity of computing the Grad-CAM loss
LCAM across L layers. Generating saliency maps Sθ(x) for a single input x for all L layers using
Grad-CAM requires one forward pass and L backward passes, thereby requiring O(NLTθ) for N
samples (Selvaraju et al., 2017). Thus, the complexity of computing LCAM (Equation 5) is O(NLTθ)
because aligning the saliency maps Sθ(xi) and Sθq

(xi) is negligible compared to model inference
time Tθ. In summary, this step is simplified to O(NLTθ).

Combining these complexities, we get:

O(NTθ +NZ logZ +NLTθ) = O
(
NLTθ

)
(∵ Tθ ≫ Z logZ).

C.2 RUNTIME ANALYSIS
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Figure 8: Runtime analy-
sis of SYNQ. The overhead
from SYNQ is marginal.

We perform a runtime analysis to investigate the computational over-
head introduced by SYNQ. For this, we measure the difference in
fine-tuning time between the baseline methods with and without
SYNQ. For fair comparison, we compare only with noise optimization
methods since they do not train a generator model while fine-tuning.
Figure 8 depicts the relative contribution of baseline methods to the
per-epoch fine-tuning time compared to the approach where SYNQ
is added to the baseline method for three baselines, IntraQ (Zhong
et al., 2022b), HAST (Li et al., 2023a), and TexQ (Chen et al., 2023).
Note that the overhead from SYNQ is marginal, i.e., the added time
takes only 17.81% of the total time in average. Thus, SYNQ improves
adopted models with minimal sacrifice of quantization time.

C.3 PREVALENT NOISE IN THE SYNTHETIC DATASET

In Section 4.2 and Figure 5, we empirically analyze the limitation of the exiting ZSQ approaches, i.e.,
their synthetic datasets contain more high-frequency components compared to real image datasets,
clearly indicating a higher level of noise. We investigate this limitation across various ZSQ methods
and datasets to demonstrate that it is a widespread issue, not confined to specific scenarios. Figures 9
and 10 show the amplitude distribution of real and synthetic datasets, respectively. We compare
three real datasets CIFAR-10, CIFAR-100, and ImageNet with the corresponding synthetic dataset
produced by three baseline methods, IntraQ (Zhong et al., 2022b) (first row), HAST (Li et al., 2023a)
(third row), and TexQ (Chen et al., 2023) (fifth row). We then apply a low-pass filter (D0 = 50) to
mitigate the observed noise. As shown in the figures, the discrepancy in amplitude distribution is
observed regardless of the baseline method or dataset. This is effectively mitigated by exploiting the
filter that removes high-frequency noise, thereby leading to enhanced quantization performance. In
summary, both the limitation of noise in synthetic dataset and effect of low-pass filter (Section 4.2)
are evident in a large variety of settings.
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(a) CIFAR-10
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(b) CIFAR-100
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(c) ImageNet

Figure 9: Amplitude distribution of various real image datasets. See Appendix C.3 for details.

Table 5: The average per-batch KL-divergence [×10−2] between the saliency maps of the pre-trained
and quantized models trained with different methods and datasets. See Section C.4 for details.

Method Real dataset
Synthetic dataset

Baseline + SYNQ

IntraQ (Zhong et al., 2022b) 3.1973 4.0251 3.2891 (-18.29%)

HAST (Li et al., 2023a) 3.0976 3.9867 3.3133 (-16.89%)

TexQ (Chen et al., 2023) 2.9952 3.8436 3.1542 (-17.94%)

C.4 FURTHER ANALYSIS ON CAM PATTERN DISCREPANCY

The observation of "predictions based on off-target patterns" from Figure 2 in Section 3 is intuitive
and persuasive, but it is analyzed under limited conditions. We explore the distance between saliency
maps derived from Grad-CAM (Selvaraju et al., 2017) to 1) validate this challenge across diverse
methods and 2) demonstrate that it applies not only to a few selected images but also to the entire
synthetic dataset on average. Table 5 presents the average distance between the saliency maps of the
pre-trained model (target) and the quantized models (prediction) trained with various methods and
datasets. We compute the KL divergence between the saliency maps of 3-bit quantized ResNet-18
models pre-trained on the ImageNet dataset, treating each saliency map as a distribution, and report
the average distance across batches with size of 32. From the result, we have three observations. First,
all three baseline methods demonstrate notable CAM discrepancies, emphasizing the generality of
this challenge in the ZSQ domain. Second, this challenge is significantly mitigated when using real
datasets, with a reduction in distance exceeding 20% compared to synthetic datasets. This highlights
that training with synthetic datasets exacerbates this problem. Last, adopting SYNQ significantly
lowers the CAM discrepancy for all baseline methods, achieving a reduction of approximately 16-
18% compared to the baseline. The resulting discrepancy is comparable to that of training with real
datasets. Overall, the challenge of CAM pattern discrepancy 1) is evident across multiple methods
and 2) is notably reduced by CAM alignment of SYNQ.

C.5 COMPARISON BETWEEN CAM ALIGNMENT AND FEATURE ALIGNMENT

Table 6: Ablation study of two align-
ment techniques. CAM alignment
shows superior performance.

FA I2 I1 & I3 Accuracy [%]

Baseline 43.63

✓ 46.77 ± 0.30
✓ 48.26 ± 0.29

✓ ✓ 51.20 ± 0.30
✓ ✓ 52.02 ± 0.34

We compare CAM (Class Activation Map) alignment of our
proposed SYNQ and feature alignment of HAST (Li et al.,
2023a) to mitigate possible misunderstandings and highlight
the novelty of the proposed idea. The main difference between
CAM alignment and feature alignment lies in their focus on
different aspects of the model’s behavior. Compared to acti-
vation maps that show the response of the model to the given
input, CAM emphasizes the region of the model related to
the model’s prediction, highlighting the most relevant features
that contribute to the final decision. This is because CAM is
defined based on the magnitude of the gradient with respect to
the cross-entropy between the prediction and the label. Con-
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(a) IntraQ + CIFAR-10
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(b) IntraQ + CIFAR-100
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(c) IntraQ + ImageNet
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(d) IntraQ + CIFAR-10 (filtered)
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(e) IntraQ + CIFAR-100 (filtered)
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(f) IntraQ + ImageNet (filtered)
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(g) HAST + CIFAR-10
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(h) HAST + CIFAR-100
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(i) HAST + ImageNet
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(j) HAST + CIFAR-10 (filtered)
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(k) HAST + CIFAR-100 (filtered)
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(l) HAST + ImageNet (filtered)
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(m) TexQ + CIFAR-10
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(n) TexQ + CIFAR-100
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(o) TexQ + ImageNet
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(p) TexQ + CIFAR-10 (filtered)
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(q) TexQ + CIFAR-100 (filtered)
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(r) TexQ + ImageNet (filtered)

Figure 10: Amplitude distribution of various synthetic datasets. See Appendix C.3 for details.
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Table 7: Comparison of ZSQ accuracy [%] of the ResNet-18 model pre-trained on the ImageNet
dataset, before and after applying SYNQ. Regardless of the baseline method and quantization bits,
SYNQ consistently improves the ZSQ accuracy.

Type Method
W3A3 W4A4

Baseline + SYNQ Imp. Baseline + SYNQ Imp.

Generator-based

GDFQ (Xu et al., 2020) 20.23 25.57 ± 0.28 5.34 60.60 61.23 ± 0.21 0.63

Qimera (Choi et al., 2021) 1.17 32.34 ± 0.30 31.17 63.84 64.28 ± 0.18 0.44

AdaDFQ (Qian et al., 2023a) 38.10 40.56 ± 0.28 2.46 66.53 66.79 ± 0.22 0.26

Noise Optimization

IntraQ (Zhong et al., 2022b) 45.51 50.44 ± 0.42 4.93 66.47 66.73 ± 0.19 0.26

HAST (Li et al., 2023a) 42.58 50.69 ± 0.38 8.11 66.91 67.19 ± 0.21 0.28

TexQ (Chen et al., 2023) 50.28 51.58 ± 0.30 1.30 67.73 67.85 ± 0.16 0.12

sidering that simple fine-tuning methods unintentionally lead the quantized model to rely on incorrect
image patterns for predictions, CAM alignment shows clear advantage over feature alignment. By
aligning the saliency maps between the original and quantized models, we ensure that the critical
predictive regions remain consistent, thereby preserving the interpretability and accuracy of the
model’s decisions, which is more effective than merely matching activation maps.

We conduct an ablation study to compare the performance. Table 6 reports the 3bit ZSQ accuracy of
ResNet-18 model on ImageNet dataset when applying CAM alignment (I2) and feature alignment
(FA). CAM alignment shows clear advantage in performance over feature alignment both with and
without other ideas (I1 & I3) of SYNQ.

Furthermore, we compare the computational overhead of two alignments. They have the same time
complexity since both maps are obtained by applying backpropagation through the network. In
practice, the average training time (in seconds) of the ResNet-18 model per epoch is 113.40 ±
2.28 seconds and 113.27 ± 2.34 seconds for CAM alignment and feature alignment, respectively.
Regarding training time, the gap between two methods is negligible. Overall, CAM alignment directly
targets the second challenge (prediction based on off-target patterns), thereby showing notable
performance enhancement with similar training time compared to the feature alignment of HAST.

C.6 APPLICATION ON DIFFERENT BASELINES

We evaluate the ZSQ performance when applying SYNQ on different baselines to investigate the adapt-
ability of the proposed method. Specifically, we select three generator-based baselines (GDFQ (Xu
et al., 2020), Qimera (Choi et al., 2021), and AdaDFQ (Qian et al., 2023a)) and three noise opti-
mization baselines (IntraQ (Zhong et al., 2022b), HAST (Li et al., 2023a), and TexQ (Chen et al.,
2023)). While generator-based methods simultaneously train the generator and quantized model,
noise optimization methods generate the synthetic dataset first and fine-tune with it afterwards.
Table 7 reports the accuracy of quantized models and the percent point improvement ("Imp."). SYNQ
consistently enhances the ZSQ performance of for all baseline methods, specifically up to 31.17%p.
The increasing effectiveness in lower bit-width experiments highlights the superiority of SYNQ. In
overall, SYNQ is powerful and versatile since it is easily integrated with any ZSQ method utilizing
synthetic dataset, enhancing their performance across various settings.

C.7 ANALYSIS ON ZERO-SHOT POST-TRAINING QUANTIZATION SETTING

In this paper, we mainly discover ZSQ under settings that additional fine-tuning of the quantized
model is performed, namely Quantization-Aware Training (QAT) setting. However, a recent work,
Genie (Jeon et al., 2023b) has explored ZSQ under Post-Training Quantization (PTQ) setting, where
no additional fine-tuning is needed. In this section, we first briefly discuss the preliminaries on
uniform quantization. Then, we compare the settings of SYNQ and Genie to mitigate possible
misunderstandings and explain why Genie is neglected from our competitors in the main experiments
(Table 1). Lastly, we integrate SYNQ with Genie and evaluate its quantization performance to
highlight the superior adaptability and broad applicability of SYNQ.
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Table 8: Zero-shot Quantization accuracy [%] of a ResNet-18 model on ImageNet quantized with
Genie (Jeon et al., 2023b) as baseline. WPAQ indicates that weights and activations are quantized each
into Pbit and Qbit, respectively. SYNQ shows consistent improvements in quantization performance
when applied to Genie, across various quantization bits.

Method W2A2 W2A4 W3A3 W4A4 Average

Genie (Jeon et al., 2023b) 54.01 65.10 66.84 69.66 63.90

+ SYNQ (Proposed) 54.97 ± 0.35 65.88 ± 0.27 67.42 ± 0.21 69.88 ± 0.19 64.54

Preliminaries on Uniform Quantization. We describe the preliminaries on the uniform quantization
scheme. Uniform quantization is to represent the weight and activation of a higher-bit given network,
within lower bit integers. To perform Bbit uniform quantization, we first linearly scale the distribution
of weight matrix W within a range of [−2B−1, 2B−1 − 1], then map weight values into equally
divided integers following the rounding-to-nearest scheme (Gupta et al., 2015). Given a matrix W
with the size of quantization granularity, the Bbit quantized matrix Wq by uniform quantization is
calculated as shown in Equation 7.

Wq = ⌊W
s
− z +

1

2
⌋, where s =

β − α

2B − 1
, z =

α

s
+ 2B−1, (7)

and [α, β] is the clipping range corresponding to [−2B−1, 2B−1 − 1] in integer scale. Properly
choosing the clipping range [α, β] for W is essential, as it defines the scaling factor s and zero-point
z required for accurate quantization. A commonly used approach, known as Min-max Quantization,
involves setting α and β to the minimum and maximum values of W, respectively. The key advantage
of min-max quantization is its simplicity and effectiveness, requiring no calibration to define the
clipping range. This makes it the most essential and unbiased baseline for fair comparison among
diverse quantization methods, especially under QAT setting.

However, min-max quantization is vulnerable to outliers, especially when quantizing activation.
Outliers significantly expand the range [α, β], leading to lower precision for the majority of values
in W during quantization. Parameterized clipping (Choi et al., 2018) mitigates this outlier effects
by allowing the range to adapt based on the data distribution. This method leverages a calibration
dataset to identify clipping thresholds α and β that best represent the data distribution for improved
quantization precision. Building on this approach, advanced techniques such as adaptive round-
ing (Nagel et al., 2020), learned step size (Esser et al., 2020), random dropping (Wei et al., 2022),
block reconstruction (Li et al., 2021), and scale reparameterization (Li et al., 2023c) have been
developed under PTQ settings, further enabling improved quantization without fine-tuning.

A Direct Comparison with Genie (Jeon et al., 2023b). We compare the settings between SYNQ
and Genie (Jeon et al., 2023b). Whereas SYNQ optimizes the parameters θq of the quantized model
in QAT, Genie follows a PTQ scheme, focusing on the scale factor s and zero-point z. To achieve this,
Genie combines a joint optimization framework for PTQ (Genie-M) for s and soft-bit V (refer to
AdaRound (Nagel et al., 2020) and Genie (Jeon et al., 2023b) for details) with advanced techniques
such as LSQ (Esser et al., 2020), QDrop (Wei et al., 2022), and BRECQ (Li et al., 2021). Moreover,
Genie fixes the quantization bits of the first layer’s weights and activation, as well as the last layer’s
activation, to 8 bits across all experiments. On the other hand, SYNQ and other QAT approaches
that are listed in Table 1 uniformly assign bits across all layers, using min-max quantization as the
baseline. Due to the differences in quantization strategies and experimental conditions, evaluating
Genie alongside zero-shot QAT methods is challenging.

Accuracy in Zero-shot Post-Training Quantization. While Genie’s PTQ framework does not sup-
port experiments under min-max quantization, our proposed method SYNQ enables synthesis-aware
fine-tuning for any ZSQ method that generates and utilizes synthetic datasets. Consequently, we
evaluate the ZSQ accuracy under Genie’s setting both with and without SYNQ in Table 8. We follow
Genie for the experimental settings (see Table 3 and Appendix A of the Genie paper) and carry
out implementation using their official code. Note that the size of synthetic dataset is 1,024 for this
experiment. Applying SYNQ leads to consistent gains in ZSQ accuracy for Genie across various
bit settings, showing an average enhancement of 0.66%p. These results clearly demonstrate the
superiority of SYNQ, showcasing its compatibility with diverse quantization techniques other than
min-max quantization.
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Table 9: 3bit ZSQ accuracy [%] of a ResNet-18 model pre-trained on ImageNet dataset when four
different types of noise is injected into its synthetic dataset. See Section C.8 for details.

Method Baseline
Noise

Gaussian Speckle S & P Uniform

TexQ (Chen et al., 2023) 50.28 33.01
(-34.35%)

29.80
(-40.74%)

40.82
(-18.81%)

39.85
(-20.74%)

SYNQ (Proposed) 52.02 43.29
(-16.78%)

35.62
(-31.53%)

46.81
(-10.01%)

45.11
(-13.28%)

C.8 ANALYSIS ON THE ROBUSTNESS TOWARDS NOISE

We validate the robustness of SYNQ towards different types of noise. Table 9 compares how TexQ
and SYNQ perform in quantization when four distinct noise types are introduced into their synthetic
datasets. Specifically, we report the 3bit ZSQ accuracy of a ResNet-18 model pre-trained on ImageNet
dataset with four types of noise: Gaussian, speckle, Salt-and-Pepper (S & P), and uniform (Bovik,
2010). We have two observations from the result. First, the low-pass filter effectively minimizes
accuracy degradation across various noise types, surpassing the baseline in capacity. Second, the
effect of low-pass filter and the influence of noise both vary significantly depending on the noise type.
Thus, our future work involves tailoring the noise filtering approach to better handle specific noise
types in synthetic datasets.

C.9 PERFORMANCE REGARDING THE SIZE OF SYNTHETIC DATASET
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Figure 11: ZSQ accuracy regard-
ing the size of synthetic dataset.
See Appendix C.9 for details.

We analyze the performance variation of SYNQ according to the
size of synthetic dataset. Figure 11 shows the 3bit ZSQ accuracy
of ResNet-18 model pre-trained on ImageNet dataset. We report
the performance while doubling the size of synthetic dataset used
for training from 80 to 5,120 images. Note that we compare the
model performance trained with 5,120 samples for the main ex-
periments (see Appendix D). We have two observations from the
result. First, SYNQ achieves higher performance when trained
with a greater number of images. Although the incremental gains
begin to drop near 1,000 images and onward, we expect that gen-
erating more than 5,120 synthetic images could achieve superior
accuracy than the results reported in Table 1. Second, SYNQ
outperforms TexQ even when training with only half the dataset,
demonstrating the effectiveness of synthesis-aware fine-tuning in-
troduced by SYNQ. In overall, SYNQ shows better performance
compared to the baselines, with performance improving as the
synthetic dataset size increases.

C.10 VISUALIZATION OF SYNTHETIC DATASET

Although SYNQ is applicable to any ZSQ methods that generate a synthetic dataset, investigating 1)
the training set utilized for the highest performance and 2) the effect of the low-pass filter (Idea 1) is
essential in understanding SYNQ. Figure 12 presents a visualization of images from three synthetic
datasets before and after the low-pass filter. These datasets are generated following the baseline
method which is detailed in Appendix D, by three different models: a ResNet-20 model pre-trained
on CIFAR-10 dataset (Figures 12a and 12b), a ResNet-20 model pre-trained on CIFAR-100 dataset
(Figures 12c and 12d), and a ResNet-18 model pre-trained on ImageNet dataset (Figures 12e and 12f).
In order to effectively visualize the effect of the low-pass filter, we set the filtering hyperparameter
D0 to 8, 8, and 40 for CIFAR-10, CIFAR-100, and ImageNet datasets, respectively. We have two
observations from Figure 12. First, the visualized images show distinct patterns and differences
across various classes. Second, the low-pass filter removes noise effectively while preserving essential
features in the generated images, which are noticeable especially in lower resolution samples.
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(a) CIFAR-10 (b) CIFAR-10 (filtered)

(c) CIFAR-100 (d) CIFAR-100 (filtered)

(e) ImageNet (f) ImageNet (filtered)

Figure 12: Visualization of samples within the synthetic dataset before (left) and after (right) the
low-pass filter, generated by (a, b) a ResNet-20 model pre-trained on CIFAR-10 dataset, (c, d) a
ResNet-20 model pre-trained on CIFAR-100 dataset, and (e, f) a ResNet-18 model pre-trained on
ImageNet dataset. See Appendix C.10 for details.
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Figure 13: Hyperparameter analysis of difficulty threshold τ with ResNet-20 (R-20) model pre-trained
on CIFAR-10 and CIFAR-100 datasets, and MobileNetV2 (MV2) model pre-trained on ImageNet
dataset. See Appendix C.11 for details.

C.11 FURTHER ANALYSIS ON THE DIFFICULTY THRESHOLD τ

In Section 5.6 and Figure 7, we conduct a hyperparameter analysis to analyze the robustness of SYNQ
towards newly introduced hyperparameters. We investigate this aspect across various models and
datasets to ensure SYNQ reflects similar tendencies across multiple settings. Figure 13 shows the ZSQ
accuracy of (a) a ResNet-20 (R-20) model pre-trained on CIFAR-10 dataset, (b) a ResNet-20 (R-20)
model pre-trained on CIFAR-100 dataset, and (c) a MobileNet-V2 (MV2) model pre-trained on
ImageNet dataset, with different τ values. Note that Figure 7(b) introduces the result of a ResNet-18
model on ImageNet dataset. We also depict the performance of the state-of-the-art competitor as a red
line for all figures. Note that SYNQ shows similar tendency across different settings, while (a) R-20 +
CIFAR-10 maximizes with the τ value of 0.7. This is because the error rate of pre-trained models
(see Figure 3) begins to increase at a higher difficulty level of approximately 0.65 for CIFAR-10,
compared to 0.5 for the others. In summary, the optimal τ should provide a nice trade-off between
containing sufficient samples and not using wrong samples.

D DETAILS ON THE EXPERIMENTAL SETUP

We describe the details on the experimental setup, including datasets, competitors, hyperparameters,
implementation, and training.

Datasets. We utilize three benchmark datasets, CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (ILSVRC 2012) (Deng et al., 2009) to evaluate the classification accuracy of the quantized
model obtained by SYNQ. We directly use both CIFAR-10 and CIFAR-100 datasets in TorchVision
package. Note that we utilize real datasets only for evaluation purposes.

Competitors. We briefly summarize the details of the competitors of SYNQ as follows:

• GDFQ (Xu et al., 2020) is the first method to utilize a knowledge-matching generator to produce
synthetic data which is guided by both batch normalization statistics loss and cross-entropy loss.

• ARC (Zhu et al., 2021) or AutoReCon is a neural architecture search-based image reconstruction
method.

• Qimera (Choi et al., 2021) uses superposed latent embeddings to generate synthetic boundary
supporting samples.

• AIT (Choi et al., 2022) improves the loss function and gradients for ARC to generate better
samples, which we denote it as AIT + ARC.

• IntraQ (Zhong et al., 2022b) highlights the intra-class heterogeneity and retains this property in
the synthetic dataset for better performance.
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• AdaSG (Qian et al., 2023b) plots the ZSQ problem as a zero-sum game between two players,
the generator and the quantized network to generate adaptive samples for the synthetic dataset.

• AdaDFQ (Qian et al., 2023a) further generalizes AdaSG to adaptively regulate the adaptability
of the synthetic samples.

• HAST (Li et al., 2023a) pays more attention to difficult samples by generating difficult samples
and further promoting the sample difficulty when training the quantized model.

• TexQ (Chen et al., 2023) retains the texture feature distributions within the synthetic dataset by
using synthetic calibration centers to calibrate samples.

• PLF (Fan et al., 2024) evaluates synthetic data to assign pseudo-labels with different reliability
to avoid misleading training.

Additionally, we compare with PSAQ-ViT (Li et al., 2022) and Genie (Jeon et al., 2023b) for the ViT
(see Section 5.3) and PTQ (see Appendix C.7) experiments, respectively.

Baseline. We introduce the baseline method to produce the synthetic dataset for the main results and
observations (e.g. Tables 3 and 6). We adopt calibration center synthesis (Chen et al., 2023), difficult
sample generation, and sample difficulty promotion (Li et al., 2023a). Producing the synthetic dataset
consists of three stages. First, we produce calibration centers following Chen et al. (2023), one center
each for all possible classes. Second, we produce the synthetic dataset with two additional losses,
hard-sample-enhanced inception loss LHIL from HAST and layered batch normalization statistics
alignment loss LG

L−BNS , added on top of Equation 1. Lastly, we attach a perturbation to each image
following sample difficulty promotion from HAST, to make generated samples more difficult for the
quantized model. We select this baseline that combines only the synthetic dataset production part
of the two papers HAST and TexQ, in order to intentionally set baselines only for the first step and
replace the existing fine-tuning process with the proposed synthesis-aware fine-tuning. Refer to the
original papers for further details.

Hyperparameters. We conduct a grid search to validate hyperparameters, and select the set with the
best performance. Table 10 reports the searched hyperparameter ranges of SYNQ for the ImageNet
dataset experiment. For competitors, we search within the range described in each paper. We conduct
5 iteration for each experiments and report the mean and standard deviation of the results.

Table 10: Hyperparameter ranges for SYNQ.

Hyperparameter Range

α1 [0.2, 0.4, 0.6, 0.8, 1]
α2 [0.01, 0.04, 0.1]
αC [0.4, 1, 2.5]
λP [0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4]

λCE [5, 5e-1, 5e-2, 5e-3]
D0 [20, 40, 60, 80, 100]
τ [0.5, 0.55, 0.6, 0.65, 0.7]
λCAM [20, 50, 100, 200, 300, 500, 2000]
CAM Technique [CAM, Grad-CAM, Grad-CAM++]

Implementation and Machine. We implement SYNQ with PyTorch and TorchVision libraries in
Python. For the other methods, we reproduce the result using their open-source code if possible and
implement them otherwise. All of our experiments were done at a workstation with Intel Xeon Silver
4214 and RTX 3090.

Training Details. We first generate the calibration centers with a constant learning rate of 0.05,
following TexQ (Chen et al., 2023). Then, we optimize samples using the loss function described
in Equation 1 with the Adam optimizer to generate the synthetic dataset. This optimizer has a
momentum of 0.9 and an initial learning rate of 0.5. The synthetic images are updated over 1,000
iterations, with the learning rate decaying by a factor of 0.1 whenever the loss does not decrease for
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50 consecutive iterations. For all datasets, a batch size of 256 is used, resulting in the generation of a
total of 5,120 images. For the fine-tuning of the quantized model, the procedure follows Equation 6,
employing SGD with a momentum of 0.9 and a weight decay of 1e-4. The batch size is set to 256 for
CIFAR-10/100 and 16 for ImageNet. Initial learning rate is searched within the range of {1e-4, 1e-5,
1e-6} and is decayed by a factor of 0.1 over training epochs nep = 100.

ViT Quantization Experiment. We compare the ZSQ precision of PSAQ-ViT (Li et al., 2022)
with that of SYNQ applied on it. PSAQ-ViT generates the synthetic dataset based on the patch
similarity, substituting the batch normalization statistics in CNN models. The pre-trained DeiT-
Tiny, DeiT-Small (Touvron et al., 2021), Swin-Tiny, and Swin-Small (Liu et al., 2021b) models on
ImageNet dataset is obtained from timm (Wightman, 2019) library. We follow Li et al. (2022) for the
experimental setup, where only 32 images are used from the synthetic dataset.
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